
1 Challenges in deep learning and individual contribu-
tions to the field

The success of deep learning came with several issues: vulnerabilities against adversar-
ial attacks, concern regarding privacy leakages of the train set, problematic behavior
for out-of-distribution data, instable training in challenging tasks with high variance
gradients, and difficulties to reason properly in LLM. The overarching objective of my
research is to develop learning algorithms that are more robust to these uncertainties and
defaults. In my researched I implemented Lipschitz and convexity constraints in neural
networks, exploring theoretical guarantees and use cases. First, in Béthune et al. (2022) I
characterized the expressiveness of these Lipschitz networks in classification tasks, showing
an accuracy/robustness tradeoff controlled by entropic regularization of the loss, with
generalization guarantees. After, in Béthune et al. (2023) I demonstrated that signed
distance functions were a solution to a regularized optimal transport problem and that
it could be used for robust one class learning and neural implicit surfaces. Finally,
I showed in Béthune et al. (2023) that it was possible to perform differentially private
training of Lipschitz networks without runtime or memory overhead. In this proposal, I
will outline some concrete projects to overcome the shortcomings of existing work and apply
these developed methodologies to new domains.

2 Research statement
Below I present a list of topics of personal interest, that I would like to pursue, in collabo-
ration. I rated them with the associate risks.

• ● Software contribution. No risk: this is a pure engineering project that takes time
and may have a significant impact nonetheless.

• ● Low risk. The literature around the required tools is plethoric. The project is
likely to be realizable.

• ● Medium risk. Existing literature suggests that the project is feasible, but some
obstacles remain along the way.

• ● High risk. The project is ambitious and the literature around the tools is scarce.

2.1 ● Improving existing toolbox in Jax

I believe that Jax (Bradbury et al., 2018) is a promising framework, thanks to its support
for jit compilation on various hardware (including GPU), its vmap function transformation
for easy and "bug-free" writing of code, and its extreme flexibility regarding automatic dif-
ferentiation. Two open-source projects gathered my attention. The Jaxopt project (Blondel
et al., 2021) on which I already contributed, a Jax library of optimizers with support of

1



implicit differentiation. The OTT-jax (Cuturi et al., 2022) project for computational opti-
mal transport. Lipschitz neural networks are a central tool in neural optimal transport, and
fruitful integration of these tools into the library are possible.

2.2 ● Conditional neural center-outward map for certified multi-
variate quantile regression

The center-outward map (del Barrio et al., 2022) is a generalization of median and quantiles
in higher dimension, based on optimal transport (Peyré et al., 2017). Neural Monge map
can be made statistically consistent with appropriate constraints and regularization (Korotin
et al., 2021; Uscidda and Cuturi, 2023). By combining this with the recent conditional
optimal transport (Bunne et al., 2022; Manupriya et al., 2023), it yields neural multivariate
regression, with statistical guarantees. My goal is to combine these different works with
Lipschitz constraints, to design the first neural multivariate quantile regressor with statistical
consistency guarantees, and benchmark it on various tasks, including RL (see below).

2.3 ● Lipschitz constraints for stable control in reinforcement learn-
ing and robotic

Lipschitz constraint stabilizes control tasks (Song et al., 2023). I believe that entropic reg-
ularization in classification tasks with Lipschitz constraint (Béthune et al., 2022) is akin to
Soft-Actor Critic’s policy regularization (Haarnoja et al., 2018), suggesting that regularized
Markov Decision Processes (Geist et al., 2019) can be solved with neural constraints on the
policy. Mean regression in state-action value function Q can be replaced with quantile regres-
sion for stabilizing training with high-variance trajectories (Dabney et al., 2018), building
upon the previous project on neural center-outward. My goal is to ensure robust and stable
learning of policies in RL (robustness against noisy measurements, heavy-tailed rewards, or
MDP shift), especially on the continuous control tasks used in robotic.

2.4 ● Lipschitz constraints for reliable neural computer graphics
and physical simulations

The award-winning of Sharp and Jacobson (2022) shown that certified and robust queries
were necessary for neural signed distance function (SDF) without aberrations. Lipschitz
regularization for SDF was subsequently studied in Liu et al. (2022). I will attempt to scale
their approach with Lipschitz constraint instead, using the formulation of Béthune et al.
(2023). Furthermore, signed distance functions can be used in Monte-Carlo-based solving
of Poisson equations, without discretization of the space, as proved in Sawhney and Crane
(2020). My goal is to design robust solvers of PDE based on Lipschitz networks, leveraging
their generalization capabilities to speed up solving on similar domains and giving formal
approximation guarantees on the solution.
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2.5 ● Theorize generalization in generative models with algorith-
mic information theory

Modern generative models, diffusion based (Yang et al., 2022) or LLM based (Vaswani et al.,
2017), have the capabilities of performing variable-length computations, with next-token
sampling or with iterative denoising based on Monte Carlo Langevin dynamics. The new
framework of ν-information (Xu et al., 2019) offers tool to understand dataset complex-
ity (Ethayarajh et al., 2022) through the lens of Kolmogorov complexity (Blier and Ollivier,
2018; Lee et al., 2022). My goal is to pose the basis of a framework to characterize the
“difficulty” (e.g sample complexity) of reasoning tasks for deep learning, using these theories.

2.6 ● Toward implementing learn/forget operations in neural net-
works

Neural networks are known to suffer from catastrophic forgetting (Kirkpatrick et al., 2017).
The field of continual learning offers tools to solve this problem (Parisi et al., 2019), and
Lipschitz networks have shown some promises in this regard (Bonicelli et al., 2022). On the
other hand, machine unlearning (Bourtoule et al., 2021) is emerging as a field that studies
how to unlearn some datapoint, for example to fix licenses or privacy concerns, or discard
noisy data, without retraining from scratch. Combining these two frameworks could allow
the design cheap learn/unlearn operators in deep learning, for example to create a self-
modifying memory in LLM, making them Turing-complete and capable of self-improvement,
a necessary ingredient for adaptability.
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