Skip to content

Cifar-10 tutorial

This notebook introduces advanced tools like MLP mixer, which involves residual connections with Lipschitz guarantees, other input space (HSB) and loss gradient clipping.

Imports

The library is based on tensorflow.

import tensorflow as tf

lip-dp dependencies

The need a model DP_Model that handles the noisification of gradients. It is trained with a loss. The model is initialized with the convenience function DPParameters.

from deel.lipdp import losses
from deel.lipdp.model import DP_Model
from deel.lipdp.model import DPParameters

The DP_Accountant callback keeps track of \((\epsilon,\delta)\)-DP values epoch after epoch. In practice we may be interested in reaching the maximum val_accuracy under privacy constraint \(\epsilon\): the convenience function get_max_epochs exactly does that by performing a dichotomy search over the number of epochs.

from deel.lipdp.model import DP_Accountant
from deel.lipdp.sensitivity import get_max_epochs

The framework requires a control of the maximum norm of inputs. This can be ensured with input clipping for example: bound_clip_value.

from deel.lipdp.pipeline import bound_clip_value
from deel.lipdp.pipeline import load_and_prepare_data

Setup DP Lipschitz model

Here we apply the "global" strategy, with a noise multiplier \(2.5\). Note that for Cifar-10 the dataset size is \(N=50,000\), and it is recommended that \(\delta<\frac{1}{N}\). So we propose a value of \(\delta=10^{-5}\).

import warnings
warnings.filterwarnings("ignore")

dp_parameters = DPParameters(
    noisify_strategy="global",
    noise_multiplier=4.0,
    delta=1e-5,
)

epsilon_max = 10.0

With many parameters, it can be interesting to use local strategy over global, since the effective noise growths as \(\mathcal{O}(\sqrt{(D)})\) in global strategy. Since the privacy leakge is more important is local strategy, we compensate with high noise_multiplier.

DP-SGD accountant

Loading the data

We clip the elementwise input upper-bound to \(40.0\). The operates in HSV space. The train set is augmented with random left/right flips.

def augmentation_fct(image, label):
    image = tf.image.random_flip_left_right(image)
    return image, label

input_upper_bound = 30.0
ds_train, ds_test, dataset_metadata = load_and_prepare_data(
    "cifar10",
    colorspace="HSV",
    batch_size=10_000,
    drop_remainder=True,  # accounting assumes fixed batch size
    augmentation_fct=augmentation_fct,
    bound_fct=bound_clip_value(  # other strategies are possible, like normalization.
        input_upper_bound
    ),  # clipping preprocessing allows to control input bound
)
2023-05-24 17:27:24.335576: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-05-24 17:27:24.905888: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 47066 MB memory:  -> device: 0, name: Quadro RTX 8000, pci bus id: 0000:03:00.0, compute capability: 7.5

Build the MLP Mixer model

We imitate the interface of Keras. We use common layers found in deel-lip, which a wrapper that handles the bound propagation.

from deel.lipdp.layers import DP_AddBias
from deel.lipdp.layers import DP_BoundedInput
from deel.lipdp.layers import DP_ClipGradient
from deel.lipdp.layers import DP_Flatten
from deel.lipdp.layers import DP_GroupSort
from deel.lipdp.layers import DP_Lambda
from deel.lipdp.layers import DP_LayerCentering
from deel.lipdp.layers import DP_Permute
from deel.lipdp.layers import DP_QuickSpectralDense
from deel.lipdp.layers import DP_Reshape
from deel.lipdp.layers import DP_ScaledGlobalL2NormPooling2D
from deel.lipdp.layers import DP_ScaledL2NormPooling2D
from deel.lipdp.layers import DP_QuickSpectralConv2D

The MLP Mixer uses residual connections. Residuals connections are handled with the utility function make_residuals that wraps the layers inside a block that handles bounds propagation.

Residuals Connections

from deel.lipdp.layers import make_residuals

Now, we proceed with the creation of the environnement.

skip_connections = False  # use skip connections, like in original MLP Mixer architecture.
clip_loss_gradient = 2**0.5  # elementwise gradient is clipped to value sqrt(2) - which is the maximum for CCE loss.
add_biases = False  # Add biases after linear transformations.
biases_norm_max = 0.05
hidden_size = 64
mlp_seq_dim = 64
mlp_channel_dim = 128
num_mixer_layers = 2  # Two MLP Mixer blocks.
layer_centering = False  # Centering operation (like LayerNormalization without the reducing operation). Linear 1-Lipschitz.
patch_size = 4  # Number of pixels in each patch.

def create_MLP_Mixer(dp_parameters, dataset_metadata, upper_bound):
    input_shape = (32, 32, 3)
    layers = [DP_BoundedInput(input_shape=input_shape, upper_bound=upper_bound)]

    layers.append(
        DP_Lambda(
            tf.image.extract_patches,
            arguments=dict(
                sizes=[1, patch_size, patch_size, 1],
                strides=[1, patch_size, patch_size, 1],
                rates=[1, 1, 1, 1],
                padding="VALID",
            ),
        )
    )

    seq_len = (input_shape[0] // patch_size) * (input_shape[1] // patch_size)

    layers.append(DP_Reshape((seq_len, (patch_size ** 2) * input_shape[-1])))
    layers.append(
        DP_QuickSpectralDense(
            units=hidden_size, use_bias=False, kernel_initializer="identity"
        )
    )

    for _ in range(num_mixer_layers):
        to_add = [
            DP_Permute((2, 1)),
            DP_QuickSpectralDense(
                units=mlp_seq_dim, use_bias=False, kernel_initializer="identity"
            ),
        ]
        if add_biases:
            to_add.append(DP_AddBias(biases_norm_max))
        to_add.append(DP_GroupSort(2))
        if layer_centering:
            to_add.append(DP_LayerCentering())
        to_add += [
            DP_QuickSpectralDense(
                units=seq_len, use_bias=False, kernel_initializer="identity"
            ),
            DP_Permute((2, 1)),
        ]

        if skip_connections:
            layers += make_residuals("1-lip-add", to_add)
        else:
            layers += to_add

        to_add = [
            DP_QuickSpectralDense(
                units=mlp_channel_dim, use_bias=False, kernel_initializer="identity"
            ),
        ]
        if add_biases:
            to_add.append(DP_AddBias(biases_norm_max))
        to_add.append(DP_GroupSort(2))
        if layer_centering:
            to_add.append(DP_LayerCentering())
        to_add.append(
            DP_QuickSpectralDense(
                units=hidden_size, use_bias=False, kernel_initializer="identity"
            )
        )

        if skip_connections:
            layers += make_residuals("1-lip-add", to_add)
        else:
            layers += to_add

    layers.append(DP_Flatten())
    layers.append(
        DP_QuickSpectralDense(units=10, use_bias=False, kernel_initializer="identity")
    )

    layers.append(DP_ClipGradient(clip_loss_gradient))

    model = DP_Model(
        layers,
        dp_parameters=dp_parameters,
        dataset_metadata=dataset_metadata,
        name="mlp_mixer",
    )

    model.build(input_shape=(None, *input_shape))

    return model

We compile the model with: * any first order optimizer (e.g Adam). No adaptation is needed. * a loss with known Lipschitz constant, e.g Categorical Cross-entropy with temperature.

model = create_MLP_Mixer(dp_parameters, dataset_metadata, input_upper_bound)
model.compile(
    # Compile model using DP loss
    loss=losses.DP_TauCategoricalCrossentropy(256.0),
    # this method is compatible with any first order optimizer
    optimizer=tf.keras.optimizers.Adam(learning_rate=2e-4),
    metrics=["accuracy"],
)
model.summary()
Model: "mlp_mixer"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 dp__bounded_input (DP_Bound  multiple                 0         
 edInput)                                                        

 dp__lambda (DP_Lambda)      multiple                  0         

 dp__reshape (DP_Reshape)    multiple                  0         

 dp__quick_spectral_dense (D  multiple                 3072      
 P_QuickSpectralDense)                                           

 dp__permute (DP_Permute)    multiple                  0         

 dp__quick_spectral_dense_1   multiple                 4096      
 (DP_QuickSpectralDense)                                         

 dp__group_sort (DP_GroupSor  multiple                 0         
 t)                                                              

 dp__quick_spectral_dense_2   multiple                 4096      
 (DP_QuickSpectralDense)                                         

 dp__permute_1 (DP_Permute)  multiple                  0         

 dp__quick_spectral_dense_3   multiple                 8192      
 (DP_QuickSpectralDense)                                         

 dp__group_sort_1 (DP_GroupS  multiple                 0         
 ort)                                                            

 dp__quick_spectral_dense_4   multiple                 8192      
 (DP_QuickSpectralDense)                                         

 dp__permute_2 (DP_Permute)  multiple                  0         

 dp__quick_spectral_dense_5   multiple                 4096      
 (DP_QuickSpectralDense)                                         

 dp__group_sort_2 (DP_GroupS  multiple                 0         
 ort)                                                            

 dp__quick_spectral_dense_6   multiple                 4096      
 (DP_QuickSpectralDense)                                         

 dp__permute_3 (DP_Permute)  multiple                  0         

 dp__quick_spectral_dense_7   multiple                 8192      
 (DP_QuickSpectralDense)                                         

 dp__group_sort_3 (DP_GroupS  multiple                 0         
 ort)                                                            

 dp__quick_spectral_dense_8   multiple                 8192      
 (DP_QuickSpectralDense)                                         

 dp__flatten (DP_Flatten)    multiple                  0         

 dp__quick_spectral_dense_9   multiple                 40960     
 (DP_QuickSpectralDense)                                         

 dp__clip_gradient (DP_ClipG  multiple                 0         
 radient)                                                        

=================================================================
Total params: 93,184
Trainable params: 93,184
Non-trainable params: 0
_________________________________________________________________

Observe that the model contains only 246K parmaeters. This is an advantage of MLP Mixer architectures: the number of parameters is small. However the number of FLOPS can be quite high. Without gradient clipping, huge batch sizes can be used, which benefits to privacy/utility ratio.

In order to control epsilon, we compute the adequate number of epochs.

num_epochs = get_max_epochs(epsilon_max, model)
epoch bounds = (0, 512.0) and epsilon = 14.81894855578722 at epoch 512.0
epoch bounds = (256.0, 512.0) and epsilon = 9.820083418023108 at epoch 256.0
epoch bounds = (256.0, 384.0) and epsilon = 12.31951600358698 at epoch 384.0
epoch bounds = (256.0, 320.0) and epsilon = 11.069799714608529 at epoch 320.0
epoch bounds = (256.0, 288.0) and epsilon = 10.44494156631582 at epoch 288.0
epoch bounds = (256.0, 272.0) and epsilon = 10.132512492169463 at epoch 272.0
epoch bounds = (264.0, 272.0) and epsilon = 9.976297955096285 at epoch 264.0
epoch bounds = (264.0, 268.0) and epsilon = 10.054405223632873 at epoch 268.0
epoch bounds = (264.0, 266.0) and epsilon = 10.015351589364581 at epoch 266.0
epoch bounds = (265.0, 266.0) and epsilon = 9.995824772230431 at epoch 265.0

Train the model

The model can be trained, and the DP Accountant will automatically track the privacy loss.

hist = model.fit(
    ds_train,
    epochs=num_epochs,
    validation_data=ds_test,
    callbacks=[
        # accounting is done thanks to a callback
        DP_Accountant(log_fn="logging"),  # wandb.log also available.
    ],
)
Epoch 1/265
5/5 [==============================] - ETA: 0s - loss: 0.1751 - accuracy: 0.1077
 (0.5205893807331654, 1e-05)-DP guarantees for epoch 1 

5/5 [==============================] - 8s 547ms/step - loss: 0.1751 - accuracy: 0.1077 - val_loss: 0.1409 - val_accuracy: 0.1045
Epoch 2/265
5/5 [==============================] - ETA: 0s - loss: 0.1243 - accuracy: 0.1061
 (0.7169615437758403, 1e-05)-DP guarantees for epoch 2 

5/5 [==============================] - 3s 451ms/step - loss: 0.1243 - accuracy: 0.1061 - val_loss: 0.1145 - val_accuracy: 0.1055
Epoch 3/265
5/5 [==============================] - ETA: 0s - loss: 0.1124 - accuracy: 0.1170
 (0.8714581783028138, 1e-05)-DP guarantees for epoch 3 

5/5 [==============================] - 3s 386ms/step - loss: 0.1124 - accuracy: 0.1170 - val_loss: 0.1095 - val_accuracy: 0.1124
Epoch 4/265
5/5 [==============================] - ETA: 0s - loss: 0.1051 - accuracy: 0.1178
 (1.0041033056975341, 1e-05)-DP guarantees for epoch 4 

5/5 [==============================] - 3s 416ms/step - loss: 0.1051 - accuracy: 0.1178 - val_loss: 0.1019 - val_accuracy: 0.1173
Epoch 5/265
5/5 [==============================] - ETA: 0s - loss: 0.0994 - accuracy: 0.1219
 (1.121902451763874, 1e-05)-DP guarantees for epoch 5 

5/5 [==============================] - 3s 404ms/step - loss: 0.0994 - accuracy: 0.1219 - val_loss: 0.0973 - val_accuracy: 0.1199
Epoch 6/265
5/5 [==============================] - ETA: 0s - loss: 0.0950 - accuracy: 0.1287
 (1.2297900098052366, 1e-05)-DP guarantees for epoch 6 

5/5 [==============================] - 3s 372ms/step - loss: 0.0950 - accuracy: 0.1287 - val_loss: 0.0952 - val_accuracy: 0.1274
Epoch 7/265
5/5 [==============================] - ETA: 0s - loss: 0.0927 - accuracy: 0.1332
 (1.3301791512711914, 1e-05)-DP guarantees for epoch 7 

5/5 [==============================] - 2s 355ms/step - loss: 0.0927 - accuracy: 0.1332 - val_loss: 0.0917 - val_accuracy: 0.1319
Epoch 8/265
5/5 [==============================] - ETA: 0s - loss: 0.0896 - accuracy: 0.1396
 (1.425115891691246, 1e-05)-DP guarantees for epoch 8 

5/5 [==============================] - 3s 360ms/step - loss: 0.0896 - accuracy: 0.1396 - val_loss: 0.0898 - val_accuracy: 0.1348
Epoch 9/265
5/5 [==============================] - ETA: 0s - loss: 0.0878 - accuracy: 0.1423
 (1.512644960027369, 1e-05)-DP guarantees for epoch 9 

5/5 [==============================] - 2s 367ms/step - loss: 0.0878 - accuracy: 0.1423 - val_loss: 0.0876 - val_accuracy: 0.1386
Epoch 10/265
5/5 [==============================] - ETA: 0s - loss: 0.0857 - accuracy: 0.1461
 (1.599192443478913, 1e-05)-DP guarantees for epoch 10 

5/5 [==============================] - 3s 359ms/step - loss: 0.0857 - accuracy: 0.1461 - val_loss: 0.0859 - val_accuracy: 0.1469
Epoch 11/265
5/5 [==============================] - ETA: 0s - loss: 0.0840 - accuracy: 0.1543
 (1.6782666312983627, 1e-05)-DP guarantees for epoch 11 

5/5 [==============================] - 3s 353ms/step - loss: 0.0840 - accuracy: 0.1543 - val_loss: 0.0844 - val_accuracy: 0.1497
Epoch 12/265
5/5 [==============================] - ETA: 0s - loss: 0.0829 - accuracy: 0.1556
 (1.7566369758486253, 1e-05)-DP guarantees for epoch 12 

5/5 [==============================] - 3s 358ms/step - loss: 0.0829 - accuracy: 0.1556 - val_loss: 0.0829 - val_accuracy: 0.1516
Epoch 13/265
5/5 [==============================] - ETA: 0s - loss: 0.0816 - accuracy: 0.1578
 (1.833150779023074, 1e-05)-DP guarantees for epoch 13 

5/5 [==============================] - 3s 367ms/step - loss: 0.0816 - accuracy: 0.1578 - val_loss: 0.0819 - val_accuracy: 0.1565
Epoch 14/265
5/5 [==============================] - ETA: 0s - loss: 0.0806 - accuracy: 0.1618
 (1.903546174784228, 1e-05)-DP guarantees for epoch 14 

5/5 [==============================] - 3s 370ms/step - loss: 0.0806 - accuracy: 0.1618 - val_loss: 0.0809 - val_accuracy: 0.1592
Epoch 15/265
5/5 [==============================] - ETA: 0s - loss: 0.0794 - accuracy: 0.1657
 (1.9739415712927695, 1e-05)-DP guarantees for epoch 15 

5/5 [==============================] - 3s 353ms/step - loss: 0.0794 - accuracy: 0.1657 - val_loss: 0.0799 - val_accuracy: 0.1614
Epoch 16/265
5/5 [==============================] - ETA: 0s - loss: 0.0788 - accuracy: 0.1654
 (2.044336966003477, 1e-05)-DP guarantees for epoch 16 

5/5 [==============================] - 2s 358ms/step - loss: 0.0788 - accuracy: 0.1654 - val_loss: 0.0791 - val_accuracy: 0.1642
Epoch 17/265
5/5 [==============================] - ETA: 0s - loss: 0.0778 - accuracy: 0.1696
 (2.111107170532668, 1e-05)-DP guarantees for epoch 17 

5/5 [==============================] - 3s 373ms/step - loss: 0.0778 - accuracy: 0.1696 - val_loss: 0.0783 - val_accuracy: 0.1667
Epoch 18/265
5/5 [==============================] - ETA: 0s - loss: 0.0773 - accuracy: 0.1720
 (2.173720558035018, 1e-05)-DP guarantees for epoch 18 

5/5 [==============================] - 3s 355ms/step - loss: 0.0773 - accuracy: 0.1720 - val_loss: 0.0775 - val_accuracy: 0.1713
Epoch 19/265
5/5 [==============================] - ETA: 0s - loss: 0.0765 - accuracy: 0.1745
 (2.236333946199693, 1e-05)-DP guarantees for epoch 19 

5/5 [==============================] - 3s 357ms/step - loss: 0.0765 - accuracy: 0.1745 - val_loss: 0.0768 - val_accuracy: 0.1718
Epoch 20/265
5/5 [==============================] - ETA: 0s - loss: 0.0755 - accuracy: 0.1785
 (2.298947335447459, 1e-05)-DP guarantees for epoch 20 

5/5 [==============================] - 3s 351ms/step - loss: 0.0755 - accuracy: 0.1785 - val_loss: 0.0761 - val_accuracy: 0.1749
Epoch 21/265
5/5 [==============================] - ETA: 0s - loss: 0.0751 - accuracy: 0.1809
 (2.3615607218535017, 1e-05)-DP guarantees for epoch 21 

5/5 [==============================] - 2s 370ms/step - loss: 0.0751 - accuracy: 0.1809 - val_loss: 0.0755 - val_accuracy: 0.1779
Epoch 22/265
5/5 [==============================] - ETA: 0s - loss: 0.0744 - accuracy: 0.1807
 (2.424031214499055, 1e-05)-DP guarantees for epoch 22 

5/5 [==============================] - 3s 359ms/step - loss: 0.0744 - accuracy: 0.1807 - val_loss: 0.0749 - val_accuracy: 0.1782
Epoch 23/265
5/5 [==============================] - ETA: 0s - loss: 0.0737 - accuracy: 0.1829
 (2.4794700865598074, 1e-05)-DP guarantees for epoch 23 

5/5 [==============================] - 2s 353ms/step - loss: 0.0737 - accuracy: 0.1829 - val_loss: 0.0744 - val_accuracy: 0.1796
Epoch 24/265
5/5 [==============================] - ETA: 0s - loss: 0.0735 - accuracy: 0.1836
 (2.5344857802909178, 1e-05)-DP guarantees for epoch 24 

5/5 [==============================] - 2s 353ms/step - loss: 0.0735 - accuracy: 0.1836 - val_loss: 0.0738 - val_accuracy: 0.1815
Epoch 25/265
5/5 [==============================] - ETA: 0s - loss: 0.0730 - accuracy: 0.1853
 (2.589501472054093, 1e-05)-DP guarantees for epoch 25 

5/5 [==============================] - 3s 371ms/step - loss: 0.0730 - accuracy: 0.1853 - val_loss: 0.0733 - val_accuracy: 0.1836
Epoch 26/265
5/5 [==============================] - ETA: 0s - loss: 0.0726 - accuracy: 0.1884
 (2.6445171621630954, 1e-05)-DP guarantees for epoch 26 

5/5 [==============================] - 3s 356ms/step - loss: 0.0726 - accuracy: 0.1884 - val_loss: 0.0729 - val_accuracy: 0.1857
Epoch 27/265
5/5 [==============================] - ETA: 0s - loss: 0.0722 - accuracy: 0.1881
 (2.699532854747239, 1e-05)-DP guarantees for epoch 27 

5/5 [==============================] - 2s 349ms/step - loss: 0.0722 - accuracy: 0.1881 - val_loss: 0.0723 - val_accuracy: 0.1882
Epoch 28/265
5/5 [==============================] - ETA: 0s - loss: 0.0715 - accuracy: 0.1901
 (2.754548546420506, 1e-05)-DP guarantees for epoch 28 

5/5 [==============================] - 3s 371ms/step - loss: 0.0715 - accuracy: 0.1901 - val_loss: 0.0718 - val_accuracy: 0.1879
Epoch 29/265
5/5 [==============================] - ETA: 0s - loss: 0.0711 - accuracy: 0.1928
 (2.809564239271509, 1e-05)-DP guarantees for epoch 29 

5/5 [==============================] - 3s 360ms/step - loss: 0.0711 - accuracy: 0.1928 - val_loss: 0.0715 - val_accuracy: 0.1915
Epoch 30/265
5/5 [==============================] - ETA: 0s - loss: 0.0710 - accuracy: 0.1933
 (2.8645799306976425, 1e-05)-DP guarantees for epoch 30 

5/5 [==============================] - 2s 362ms/step - loss: 0.0710 - accuracy: 0.1933 - val_loss: 0.0710 - val_accuracy: 0.1922
Epoch 31/265
5/5 [==============================] - ETA: 0s - loss: 0.0701 - accuracy: 0.1993
 (2.915773408283026, 1e-05)-DP guarantees for epoch 31 

5/5 [==============================] - 2s 352ms/step - loss: 0.0701 - accuracy: 0.1993 - val_loss: 0.0706 - val_accuracy: 0.1940
Epoch 32/265
5/5 [==============================] - ETA: 0s - loss: 0.0698 - accuracy: 0.1996
 (2.9633676512735834, 1e-05)-DP guarantees for epoch 32 

5/5 [==============================] - 2s 355ms/step - loss: 0.0698 - accuracy: 0.1996 - val_loss: 0.0702 - val_accuracy: 0.1964
Epoch 33/265
5/5 [==============================] - ETA: 0s - loss: 0.0695 - accuracy: 0.2004
 (3.010961895901816, 1e-05)-DP guarantees for epoch 33 

5/5 [==============================] - 3s 375ms/step - loss: 0.0695 - accuracy: 0.2004 - val_loss: 0.0699 - val_accuracy: 0.1984
Epoch 34/265
5/5 [==============================] - ETA: 0s - loss: 0.0692 - accuracy: 0.1995
 (3.0585561401091397, 1e-05)-DP guarantees for epoch 34 

5/5 [==============================] - 3s 352ms/step - loss: 0.0692 - accuracy: 0.1995 - val_loss: 0.0696 - val_accuracy: 0.1975
Epoch 35/265
5/5 [==============================] - ETA: 0s - loss: 0.0685 - accuracy: 0.2045
 (3.1061503817189315, 1e-05)-DP guarantees for epoch 35 

5/5 [==============================] - 3s 349ms/step - loss: 0.0685 - accuracy: 0.2045 - val_loss: 0.0692 - val_accuracy: 0.2009
Epoch 36/265
5/5 [==============================] - ETA: 0s - loss: 0.0686 - accuracy: 0.2045
 (3.1537446235861095, 1e-05)-DP guarantees for epoch 36 

5/5 [==============================] - 3s 364ms/step - loss: 0.0686 - accuracy: 0.2045 - val_loss: 0.0689 - val_accuracy: 0.2032
Epoch 37/265
5/5 [==============================] - ETA: 0s - loss: 0.0684 - accuracy: 0.2033
 (3.2013388677062005, 1e-05)-DP guarantees for epoch 37 

5/5 [==============================] - 2s 349ms/step - loss: 0.0684 - accuracy: 0.2033 - val_loss: 0.0686 - val_accuracy: 0.2033
Epoch 38/265
5/5 [==============================] - ETA: 0s - loss: 0.0684 - accuracy: 0.2024
 (3.2489331117939875, 1e-05)-DP guarantees for epoch 38 

5/5 [==============================] - 3s 352ms/step - loss: 0.0684 - accuracy: 0.2024 - val_loss: 0.0683 - val_accuracy: 0.2046
Epoch 39/265
5/5 [==============================] - ETA: 0s - loss: 0.0675 - accuracy: 0.2064
 (3.296527354122463, 1e-05)-DP guarantees for epoch 39 

5/5 [==============================] - 3s 390ms/step - loss: 0.0675 - accuracy: 0.2064 - val_loss: 0.0681 - val_accuracy: 0.2055
Epoch 40/265
5/5 [==============================] - ETA: 0s - loss: 0.0678 - accuracy: 0.2071
 (3.3441215974412257, 1e-05)-DP guarantees for epoch 40 

5/5 [==============================] - 2s 343ms/step - loss: 0.0678 - accuracy: 0.2071 - val_loss: 0.0679 - val_accuracy: 0.2061
Epoch 41/265
5/5 [==============================] - ETA: 0s - loss: 0.0670 - accuracy: 0.2076
 (3.391715841019588, 1e-05)-DP guarantees for epoch 41 

5/5 [==============================] - 2s 348ms/step - loss: 0.0670 - accuracy: 0.2076 - val_loss: 0.0676 - val_accuracy: 0.2047
Epoch 42/265
5/5 [==============================] - ETA: 0s - loss: 0.0670 - accuracy: 0.2074
 (3.4393100820764655, 1e-05)-DP guarantees for epoch 42 

5/5 [==============================] - 3s 362ms/step - loss: 0.0670 - accuracy: 0.2074 - val_loss: 0.0673 - val_accuracy: 0.2077
Epoch 43/265
5/5 [==============================] - ETA: 0s - loss: 0.0668 - accuracy: 0.2091
 (3.4869043257012042, 1e-05)-DP guarantees for epoch 43 

5/5 [==============================] - 3s 365ms/step - loss: 0.0668 - accuracy: 0.2091 - val_loss: 0.0671 - val_accuracy: 0.2098
Epoch 44/265
5/5 [==============================] - ETA: 0s - loss: 0.0664 - accuracy: 0.2133
 (3.5344943006583662, 1e-05)-DP guarantees for epoch 44 

5/5 [==============================] - 2s 353ms/step - loss: 0.0664 - accuracy: 0.2133 - val_loss: 0.0668 - val_accuracy: 0.2111
Epoch 45/265
5/5 [==============================] - ETA: 0s - loss: 0.0662 - accuracy: 0.2116
 (3.577278802435221, 1e-05)-DP guarantees for epoch 45 

5/5 [==============================] - 3s 368ms/step - loss: 0.0662 - accuracy: 0.2116 - val_loss: 0.0666 - val_accuracy: 0.2110
Epoch 46/265
5/5 [==============================] - ETA: 0s - loss: 0.0658 - accuracy: 0.2144
 (3.6176202954309518, 1e-05)-DP guarantees for epoch 46 

5/5 [==============================] - 3s 363ms/step - loss: 0.0658 - accuracy: 0.2144 - val_loss: 0.0663 - val_accuracy: 0.2136
Epoch 47/265
5/5 [==============================] - ETA: 0s - loss: 0.0660 - accuracy: 0.2136
 (3.6579617884266824, 1e-05)-DP guarantees for epoch 47 

5/5 [==============================] - 3s 361ms/step - loss: 0.0660 - accuracy: 0.2136 - val_loss: 0.0662 - val_accuracy: 0.2103
Epoch 48/265
5/5 [==============================] - ETA: 0s - loss: 0.0658 - accuracy: 0.2124
 (3.698303280878773, 1e-05)-DP guarantees for epoch 48 

5/5 [==============================] - 3s 378ms/step - loss: 0.0658 - accuracy: 0.2124 - val_loss: 0.0660 - val_accuracy: 0.2126
Epoch 49/265
5/5 [==============================] - ETA: 0s - loss: 0.0651 - accuracy: 0.2170
 (3.7386447748463074, 1e-05)-DP guarantees for epoch 49 

5/5 [==============================] - 3s 356ms/step - loss: 0.0651 - accuracy: 0.2170 - val_loss: 0.0658 - val_accuracy: 0.2141
Epoch 50/265
5/5 [==============================] - ETA: 0s - loss: 0.0650 - accuracy: 0.2147
 (3.778986264959221, 1e-05)-DP guarantees for epoch 50 

5/5 [==============================] - 2s 359ms/step - loss: 0.0650 - accuracy: 0.2147 - val_loss: 0.0657 - val_accuracy: 0.2139
Epoch 51/265
5/5 [==============================] - ETA: 0s - loss: 0.0649 - accuracy: 0.2157
 (3.819327759198358, 1e-05)-DP guarantees for epoch 51 

5/5 [==============================] - 3s 362ms/step - loss: 0.0649 - accuracy: 0.2157 - val_loss: 0.0654 - val_accuracy: 0.2154
Epoch 52/265
5/5 [==============================] - ETA: 0s - loss: 0.0646 - accuracy: 0.2177
 (3.859669252353283, 1e-05)-DP guarantees for epoch 52 

5/5 [==============================] - 3s 374ms/step - loss: 0.0646 - accuracy: 0.2177 - val_loss: 0.0652 - val_accuracy: 0.2159
Epoch 53/265
5/5 [==============================] - ETA: 0s - loss: 0.0647 - accuracy: 0.2164
 (3.900010744909916, 1e-05)-DP guarantees for epoch 53 

5/5 [==============================] - 3s 398ms/step - loss: 0.0647 - accuracy: 0.2164 - val_loss: 0.0651 - val_accuracy: 0.2139
Epoch 54/265
5/5 [==============================] - ETA: 0s - loss: 0.0642 - accuracy: 0.2180
 (3.9403522382284417, 1e-05)-DP guarantees for epoch 54 

5/5 [==============================] - 2s 356ms/step - loss: 0.0642 - accuracy: 0.2180 - val_loss: 0.0649 - val_accuracy: 0.2165
Epoch 55/265
5/5 [==============================] - ETA: 0s - loss: 0.0643 - accuracy: 0.2178
 (3.9806937272852823, 1e-05)-DP guarantees for epoch 55 

5/5 [==============================] - 3s 385ms/step - loss: 0.0643 - accuracy: 0.2178 - val_loss: 0.0648 - val_accuracy: 0.2190
Epoch 56/265
5/5 [==============================] - ETA: 0s - loss: 0.0642 - accuracy: 0.2194
 (4.021035219696142, 1e-05)-DP guarantees for epoch 56 

5/5 [==============================] - 3s 358ms/step - loss: 0.0642 - accuracy: 0.2194 - val_loss: 0.0646 - val_accuracy: 0.2190
Epoch 57/265
5/5 [==============================] - ETA: 0s - loss: 0.0641 - accuracy: 0.2193
 (4.061376713362479, 1e-05)-DP guarantees for epoch 57 

5/5 [==============================] - 3s 357ms/step - loss: 0.0641 - accuracy: 0.2193 - val_loss: 0.0644 - val_accuracy: 0.2188
Epoch 58/265
5/5 [==============================] - ETA: 0s - loss: 0.0637 - accuracy: 0.2209
 (4.101718205195644, 1e-05)-DP guarantees for epoch 58 

5/5 [==============================] - 3s 389ms/step - loss: 0.0637 - accuracy: 0.2209 - val_loss: 0.0643 - val_accuracy: 0.2203
Epoch 59/265
5/5 [==============================] - ETA: 0s - loss: 0.0636 - accuracy: 0.2207
 (4.142059698567775, 1e-05)-DP guarantees for epoch 59 

5/5 [==============================] - 2s 350ms/step - loss: 0.0636 - accuracy: 0.2207 - val_loss: 0.0641 - val_accuracy: 0.2217
Epoch 60/265
5/5 [==============================] - ETA: 0s - loss: 0.0631 - accuracy: 0.2238
 (4.182401188996273, 1e-05)-DP guarantees for epoch 60 

5/5 [==============================] - 2s 350ms/step - loss: 0.0631 - accuracy: 0.2238 - val_loss: 0.0639 - val_accuracy: 0.2218
Epoch 61/265
5/5 [==============================] - ETA: 0s - loss: 0.0635 - accuracy: 0.2223
 (4.222742681534986, 1e-05)-DP guarantees for epoch 61 

5/5 [==============================] - 3s 357ms/step - loss: 0.0635 - accuracy: 0.2223 - val_loss: 0.0638 - val_accuracy: 0.2214
Epoch 62/265
5/5 [==============================] - ETA: 0s - loss: 0.0628 - accuracy: 0.2212
 (4.263084178169554, 1e-05)-DP guarantees for epoch 62 

5/5 [==============================] - 3s 358ms/step - loss: 0.0628 - accuracy: 0.2212 - val_loss: 0.0637 - val_accuracy: 0.2214
Epoch 63/265
5/5 [==============================] - ETA: 0s - loss: 0.0629 - accuracy: 0.2236
 (4.303425669322495, 1e-05)-DP guarantees for epoch 63 

5/5 [==============================] - 3s 357ms/step - loss: 0.0629 - accuracy: 0.2236 - val_loss: 0.0635 - val_accuracy: 0.2238
Epoch 64/265
5/5 [==============================] - ETA: 0s - loss: 0.0628 - accuracy: 0.2244
 (4.343767159305043, 1e-05)-DP guarantees for epoch 64 

5/5 [==============================] - 2s 357ms/step - loss: 0.0628 - accuracy: 0.2244 - val_loss: 0.0633 - val_accuracy: 0.2229
Epoch 65/265
5/5 [==============================] - ETA: 0s - loss: 0.0627 - accuracy: 0.2242
 (4.384108652677016, 1e-05)-DP guarantees for epoch 65 

5/5 [==============================] - 3s 375ms/step - loss: 0.0627 - accuracy: 0.2242 - val_loss: 0.0632 - val_accuracy: 0.2232
Epoch 66/265
5/5 [==============================] - ETA: 0s - loss: 0.0625 - accuracy: 0.2260
 (4.42445014497077, 1e-05)-DP guarantees for epoch 66 

5/5 [==============================] - 2s 344ms/step - loss: 0.0625 - accuracy: 0.2260 - val_loss: 0.0630 - val_accuracy: 0.2248
Epoch 67/265
5/5 [==============================] - ETA: 0s - loss: 0.0625 - accuracy: 0.2271
 (4.4647916365799585, 1e-05)-DP guarantees for epoch 67 

5/5 [==============================] - 3s 368ms/step - loss: 0.0625 - accuracy: 0.2271 - val_loss: 0.0628 - val_accuracy: 0.2265
Epoch 68/265
5/5 [==============================] - ETA: 0s - loss: 0.0622 - accuracy: 0.2292
 (4.505133128586104, 1e-05)-DP guarantees for epoch 68 

5/5 [==============================] - 3s 365ms/step - loss: 0.0622 - accuracy: 0.2292 - val_loss: 0.0626 - val_accuracy: 0.2242
Epoch 69/265
5/5 [==============================] - ETA: 0s - loss: 0.0623 - accuracy: 0.2276
 (4.544958472325187, 1e-05)-DP guarantees for epoch 69 

5/5 [==============================] - 2s 359ms/step - loss: 0.0623 - accuracy: 0.2276 - val_loss: 0.0626 - val_accuracy: 0.2254
Epoch 70/265
5/5 [==============================] - ETA: 0s - loss: 0.0619 - accuracy: 0.2288
 (4.580253889044595, 1e-05)-DP guarantees for epoch 70 

5/5 [==============================] - 2s 362ms/step - loss: 0.0619 - accuracy: 0.2288 - val_loss: 0.0624 - val_accuracy: 0.2272
Epoch 71/265
5/5 [==============================] - ETA: 0s - loss: 0.0619 - accuracy: 0.2288
 (4.613504255128257, 1e-05)-DP guarantees for epoch 71 

5/5 [==============================] - 2s 356ms/step - loss: 0.0619 - accuracy: 0.2288 - val_loss: 0.0623 - val_accuracy: 0.2258
Epoch 72/265
5/5 [==============================] - ETA: 0s - loss: 0.0617 - accuracy: 0.2283
 (4.646754619793705, 1e-05)-DP guarantees for epoch 72 

5/5 [==============================] - 3s 379ms/step - loss: 0.0617 - accuracy: 0.2283 - val_loss: 0.0622 - val_accuracy: 0.2262
Epoch 73/265
5/5 [==============================] - ETA: 0s - loss: 0.0615 - accuracy: 0.2309
 (4.680004986868141, 1e-05)-DP guarantees for epoch 73 

5/5 [==============================] - 3s 363ms/step - loss: 0.0615 - accuracy: 0.2309 - val_loss: 0.0621 - val_accuracy: 0.2292
Epoch 74/265
5/5 [==============================] - ETA: 0s - loss: 0.0614 - accuracy: 0.2298
 (4.713255352027643, 1e-05)-DP guarantees for epoch 74 

5/5 [==============================] - 3s 392ms/step - loss: 0.0614 - accuracy: 0.2298 - val_loss: 0.0619 - val_accuracy: 0.2273
Epoch 75/265
5/5 [==============================] - ETA: 0s - loss: 0.0616 - accuracy: 0.2288
 (4.746505714565027, 1e-05)-DP guarantees for epoch 75 

5/5 [==============================] - 2s 346ms/step - loss: 0.0616 - accuracy: 0.2288 - val_loss: 0.0618 - val_accuracy: 0.2283
Epoch 76/265
5/5 [==============================] - ETA: 0s - loss: 0.0613 - accuracy: 0.2314
 (4.779756080992392, 1e-05)-DP guarantees for epoch 76 

5/5 [==============================] - 3s 375ms/step - loss: 0.0613 - accuracy: 0.2314 - val_loss: 0.0617 - val_accuracy: 0.2285
Epoch 77/265
5/5 [==============================] - ETA: 0s - loss: 0.0611 - accuracy: 0.2321
 (4.813006446042454, 1e-05)-DP guarantees for epoch 77 

5/5 [==============================] - 3s 368ms/step - loss: 0.0611 - accuracy: 0.2321 - val_loss: 0.0615 - val_accuracy: 0.2279
Epoch 78/265
5/5 [==============================] - ETA: 0s - loss: 0.0609 - accuracy: 0.2321
 (4.84625681135709, 1e-05)-DP guarantees for epoch 78 

5/5 [==============================] - 2s 366ms/step - loss: 0.0609 - accuracy: 0.2321 - val_loss: 0.0614 - val_accuracy: 0.2309
Epoch 79/265
5/5 [==============================] - ETA: 0s - loss: 0.0608 - accuracy: 0.2326
 (4.879507178851574, 1e-05)-DP guarantees for epoch 79 

5/5 [==============================] - 3s 359ms/step - loss: 0.0608 - accuracy: 0.2326 - val_loss: 0.0613 - val_accuracy: 0.2316
Epoch 80/265
5/5 [==============================] - ETA: 0s - loss: 0.0608 - accuracy: 0.2311
 (4.912757545677179, 1e-05)-DP guarantees for epoch 80 

5/5 [==============================] - 2s 352ms/step - loss: 0.0608 - accuracy: 0.2311 - val_loss: 0.0612 - val_accuracy: 0.2311
Epoch 81/265
5/5 [==============================] - ETA: 0s - loss: 0.0607 - accuracy: 0.2333
 (4.9460079085624, 1e-05)-DP guarantees for epoch 81 

5/5 [==============================] - 2s 344ms/step - loss: 0.0607 - accuracy: 0.2333 - val_loss: 0.0611 - val_accuracy: 0.2317
Epoch 82/265
5/5 [==============================] - ETA: 0s - loss: 0.0607 - accuracy: 0.2341
 (4.979258270989774, 1e-05)-DP guarantees for epoch 82 

5/5 [==============================] - 2s 339ms/step - loss: 0.0607 - accuracy: 0.2341 - val_loss: 0.0610 - val_accuracy: 0.2338
Epoch 83/265
5/5 [==============================] - ETA: 0s - loss: 0.0604 - accuracy: 0.2339
 (5.012508634818511, 1e-05)-DP guarantees for epoch 83 

5/5 [==============================] - 2s 358ms/step - loss: 0.0604 - accuracy: 0.2339 - val_loss: 0.0609 - val_accuracy: 0.2318
Epoch 84/265
5/5 [==============================] - ETA: 0s - loss: 0.0605 - accuracy: 0.2348
 (5.045759003430268, 1e-05)-DP guarantees for epoch 84 

5/5 [==============================] - 3s 360ms/step - loss: 0.0605 - accuracy: 0.2348 - val_loss: 0.0608 - val_accuracy: 0.2312
Epoch 85/265
5/5 [==============================] - ETA: 0s - loss: 0.0603 - accuracy: 0.2332
 (5.0790093680054635, 1e-05)-DP guarantees for epoch 85 

5/5 [==============================] - 3s 348ms/step - loss: 0.0603 - accuracy: 0.2332 - val_loss: 0.0607 - val_accuracy: 0.2326
Epoch 86/265
5/5 [==============================] - ETA: 0s - loss: 0.0600 - accuracy: 0.2355
 (5.112259736439092, 1e-05)-DP guarantees for epoch 86 

5/5 [==============================] - 3s 364ms/step - loss: 0.0600 - accuracy: 0.2355 - val_loss: 0.0606 - val_accuracy: 0.2333
Epoch 87/265
5/5 [==============================] - ETA: 0s - loss: 0.0600 - accuracy: 0.2357
 (5.14551009793596, 1e-05)-DP guarantees for epoch 87 

5/5 [==============================] - 2s 351ms/step - loss: 0.0600 - accuracy: 0.2357 - val_loss: 0.0604 - val_accuracy: 0.2335
Epoch 88/265
5/5 [==============================] - ETA: 0s - loss: 0.0598 - accuracy: 0.2397
 (5.178760460033292, 1e-05)-DP guarantees for epoch 88 

5/5 [==============================] - 2s 348ms/step - loss: 0.0598 - accuracy: 0.2397 - val_loss: 0.0603 - val_accuracy: 0.2327
Epoch 89/265
5/5 [==============================] - ETA: 0s - loss: 0.0596 - accuracy: 0.2377
 (5.212010824793953, 1e-05)-DP guarantees for epoch 89 

5/5 [==============================] - 2s 345ms/step - loss: 0.0596 - accuracy: 0.2377 - val_loss: 0.0602 - val_accuracy: 0.2333
Epoch 90/265
5/5 [==============================] - ETA: 0s - loss: 0.0597 - accuracy: 0.2372
 (5.24526119058743, 1e-05)-DP guarantees for epoch 90 

5/5 [==============================] - 2s 356ms/step - loss: 0.0597 - accuracy: 0.2372 - val_loss: 0.0601 - val_accuracy: 0.2336
Epoch 91/265
5/5 [==============================] - ETA: 0s - loss: 0.0595 - accuracy: 0.2367
 (5.278511560314511, 1e-05)-DP guarantees for epoch 91 

5/5 [==============================] - 2s 361ms/step - loss: 0.0595 - accuracy: 0.2367 - val_loss: 0.0600 - val_accuracy: 0.2331
Epoch 92/265
5/5 [==============================] - ETA: 0s - loss: 0.0598 - accuracy: 0.2373
 (5.311761920262455, 1e-05)-DP guarantees for epoch 92 

5/5 [==============================] - 3s 355ms/step - loss: 0.0598 - accuracy: 0.2373 - val_loss: 0.0599 - val_accuracy: 0.2358
Epoch 93/265
5/5 [==============================] - ETA: 0s - loss: 0.0594 - accuracy: 0.2368
 (5.3450122912656255, 1e-05)-DP guarantees for epoch 93 

5/5 [==============================] - 3s 364ms/step - loss: 0.0594 - accuracy: 0.2368 - val_loss: 0.0598 - val_accuracy: 0.2346
Epoch 94/265
5/5 [==============================] - ETA: 0s - loss: 0.0592 - accuracy: 0.2380
 (5.37826264973137, 1e-05)-DP guarantees for epoch 94 

5/5 [==============================] - 2s 351ms/step - loss: 0.0592 - accuracy: 0.2380 - val_loss: 0.0597 - val_accuracy: 0.2347
Epoch 95/265
5/5 [==============================] - ETA: 0s - loss: 0.0593 - accuracy: 0.2357
 (5.4115130208687106, 1e-05)-DP guarantees for epoch 95 

5/5 [==============================] - 2s 360ms/step - loss: 0.0593 - accuracy: 0.2357 - val_loss: 0.0596 - val_accuracy: 0.2348
Epoch 96/265
5/5 [==============================] - ETA: 0s - loss: 0.0594 - accuracy: 0.2376
 (5.444763387799843, 1e-05)-DP guarantees for epoch 96 

5/5 [==============================] - 2s 349ms/step - loss: 0.0594 - accuracy: 0.2376 - val_loss: 0.0595 - val_accuracy: 0.2362
Epoch 97/265
5/5 [==============================] - ETA: 0s - loss: 0.0589 - accuracy: 0.2411
 (5.47801375480832, 1e-05)-DP guarantees for epoch 97 

5/5 [==============================] - 2s 363ms/step - loss: 0.0589 - accuracy: 0.2411 - val_loss: 0.0594 - val_accuracy: 0.2375
Epoch 98/265
5/5 [==============================] - ETA: 0s - loss: 0.0590 - accuracy: 0.2404
 (5.511264111964721, 1e-05)-DP guarantees for epoch 98 

5/5 [==============================] - 2s 350ms/step - loss: 0.0590 - accuracy: 0.2404 - val_loss: 0.0593 - val_accuracy: 0.2377
Epoch 99/265
5/5 [==============================] - ETA: 0s - loss: 0.0586 - accuracy: 0.2406
 (5.544514479570887, 1e-05)-DP guarantees for epoch 99 

5/5 [==============================] - 2s 347ms/step - loss: 0.0586 - accuracy: 0.2406 - val_loss: 0.0593 - val_accuracy: 0.2389
Epoch 100/265
5/5 [==============================] - ETA: 0s - loss: 0.0587 - accuracy: 0.2436
 (5.5777648468507035, 1e-05)-DP guarantees for epoch 100 

5/5 [==============================] - 3s 356ms/step - loss: 0.0587 - accuracy: 0.2436 - val_loss: 0.0592 - val_accuracy: 0.2383
Epoch 101/265
5/5 [==============================] - ETA: 0s - loss: 0.0586 - accuracy: 0.2405
 (5.611015209476669, 1e-05)-DP guarantees for epoch 101 

5/5 [==============================] - 3s 362ms/step - loss: 0.0586 - accuracy: 0.2405 - val_loss: 0.0590 - val_accuracy: 0.2382
Epoch 102/265
5/5 [==============================] - ETA: 0s - loss: 0.0586 - accuracy: 0.2409
 (5.644265572603777, 1e-05)-DP guarantees for epoch 102 

5/5 [==============================] - 3s 359ms/step - loss: 0.0586 - accuracy: 0.2409 - val_loss: 0.0589 - val_accuracy: 0.2376
Epoch 103/265
5/5 [==============================] - ETA: 0s - loss: 0.0584 - accuracy: 0.2425
 (5.67751593629532, 1e-05)-DP guarantees for epoch 103 

5/5 [==============================] - 3s 366ms/step - loss: 0.0584 - accuracy: 0.2425 - val_loss: 0.0588 - val_accuracy: 0.2397
Epoch 104/265
5/5 [==============================] - ETA: 0s - loss: 0.0583 - accuracy: 0.2422
 (5.710766303023046, 1e-05)-DP guarantees for epoch 104 

5/5 [==============================] - 3s 370ms/step - loss: 0.0583 - accuracy: 0.2422 - val_loss: 0.0587 - val_accuracy: 0.2384
Epoch 105/265
5/5 [==============================] - ETA: 0s - loss: 0.0582 - accuracy: 0.2425
 (5.7440166690784755, 1e-05)-DP guarantees for epoch 105 

5/5 [==============================] - 3s 364ms/step - loss: 0.0582 - accuracy: 0.2425 - val_loss: 0.0586 - val_accuracy: 0.2383
Epoch 106/265
5/5 [==============================] - ETA: 0s - loss: 0.0583 - accuracy: 0.2411
 (5.777267031618594, 1e-05)-DP guarantees for epoch 106 

5/5 [==============================] - 2s 345ms/step - loss: 0.0583 - accuracy: 0.2411 - val_loss: 0.0586 - val_accuracy: 0.2387
Epoch 107/265
5/5 [==============================] - ETA: 0s - loss: 0.0578 - accuracy: 0.2438
 (5.8105173958576675, 1e-05)-DP guarantees for epoch 107 

5/5 [==============================] - 2s 343ms/step - loss: 0.0578 - accuracy: 0.2438 - val_loss: 0.0585 - val_accuracy: 0.2409
Epoch 108/265
5/5 [==============================] - ETA: 0s - loss: 0.0582 - accuracy: 0.2442
 (5.843767765269359, 1e-05)-DP guarantees for epoch 108 

5/5 [==============================] - 2s 359ms/step - loss: 0.0582 - accuracy: 0.2442 - val_loss: 0.0584 - val_accuracy: 0.2440
Epoch 109/265
5/5 [==============================] - ETA: 0s - loss: 0.0578 - accuracy: 0.2456
 (5.877018127929281, 1e-05)-DP guarantees for epoch 109 

5/5 [==============================] - 2s 355ms/step - loss: 0.0578 - accuracy: 0.2456 - val_loss: 0.0584 - val_accuracy: 0.2419
Epoch 110/265
5/5 [==============================] - ETA: 0s - loss: 0.0580 - accuracy: 0.2440
 (5.910268490844311, 1e-05)-DP guarantees for epoch 110 

5/5 [==============================] - 2s 362ms/step - loss: 0.0580 - accuracy: 0.2440 - val_loss: 0.0583 - val_accuracy: 0.2429
Epoch 111/265
5/5 [==============================] - ETA: 0s - loss: 0.0578 - accuracy: 0.2473
 (5.943518855328065, 1e-05)-DP guarantees for epoch 111 

5/5 [==============================] - 2s 350ms/step - loss: 0.0578 - accuracy: 0.2473 - val_loss: 0.0583 - val_accuracy: 0.2448
Epoch 112/265
5/5 [==============================] - ETA: 0s - loss: 0.0577 - accuracy: 0.2469
 (5.9767692222925275, 1e-05)-DP guarantees for epoch 112 

5/5 [==============================] - 3s 348ms/step - loss: 0.0577 - accuracy: 0.2469 - val_loss: 0.0582 - val_accuracy: 0.2447
Epoch 113/265
5/5 [==============================] - ETA: 0s - loss: 0.0579 - accuracy: 0.2479
 (6.0100195891034165, 1e-05)-DP guarantees for epoch 113 

5/5 [==============================] - 2s 348ms/step - loss: 0.0579 - accuracy: 0.2479 - val_loss: 0.0581 - val_accuracy: 0.2453
Epoch 114/265
5/5 [==============================] - ETA: 0s - loss: 0.0576 - accuracy: 0.2468
 (6.043269950764723, 1e-05)-DP guarantees for epoch 114 

5/5 [==============================] - 3s 361ms/step - loss: 0.0576 - accuracy: 0.2468 - val_loss: 0.0580 - val_accuracy: 0.2432
Epoch 115/265
5/5 [==============================] - ETA: 0s - loss: 0.0574 - accuracy: 0.2472
 (6.076520315246205, 1e-05)-DP guarantees for epoch 115 

5/5 [==============================] - 2s 357ms/step - loss: 0.0574 - accuracy: 0.2472 - val_loss: 0.0579 - val_accuracy: 0.2441
Epoch 116/265
5/5 [==============================] - ETA: 0s - loss: 0.0573 - accuracy: 0.2476
 (6.109770681686705, 1e-05)-DP guarantees for epoch 116 

5/5 [==============================] - 2s 363ms/step - loss: 0.0573 - accuracy: 0.2476 - val_loss: 0.0579 - val_accuracy: 0.2440
Epoch 117/265
5/5 [==============================] - ETA: 0s - loss: 0.0575 - accuracy: 0.2470
 (6.143021045607053, 1e-05)-DP guarantees for epoch 117 

5/5 [==============================] - 3s 357ms/step - loss: 0.0575 - accuracy: 0.2470 - val_loss: 0.0578 - val_accuracy: 0.2479
Epoch 118/265
5/5 [==============================] - ETA: 0s - loss: 0.0572 - accuracy: 0.2481
 (6.1762714106501475, 1e-05)-DP guarantees for epoch 118 

5/5 [==============================] - 3s 360ms/step - loss: 0.0572 - accuracy: 0.2481 - val_loss: 0.0576 - val_accuracy: 0.2450
Epoch 119/265
5/5 [==============================] - ETA: 0s - loss: 0.0572 - accuracy: 0.2500
 (6.209521499901805, 1e-05)-DP guarantees for epoch 119 

5/5 [==============================] - 3s 367ms/step - loss: 0.0572 - accuracy: 0.2500 - val_loss: 0.0576 - val_accuracy: 0.2446
Epoch 120/265
5/5 [==============================] - ETA: 0s - loss: 0.0569 - accuracy: 0.2497
 (6.241605627485653, 1e-05)-DP guarantees for epoch 120 

5/5 [==============================] - 2s 355ms/step - loss: 0.0569 - accuracy: 0.2497 - val_loss: 0.0575 - val_accuracy: 0.2451
Epoch 121/265
5/5 [==============================] - ETA: 0s - loss: 0.0569 - accuracy: 0.2510
 (6.271221812058615, 1e-05)-DP guarantees for epoch 121 

5/5 [==============================] - 2s 351ms/step - loss: 0.0569 - accuracy: 0.2510 - val_loss: 0.0574 - val_accuracy: 0.2445
Epoch 122/265
5/5 [==============================] - ETA: 0s - loss: 0.0571 - accuracy: 0.2481
 (6.298196491974402, 1e-05)-DP guarantees for epoch 122 

5/5 [==============================] - 2s 359ms/step - loss: 0.0571 - accuracy: 0.2481 - val_loss: 0.0574 - val_accuracy: 0.2447
Epoch 123/265
5/5 [==============================] - ETA: 0s - loss: 0.0568 - accuracy: 0.2517
 (6.324510712314491, 1e-05)-DP guarantees for epoch 123 

5/5 [==============================] - 2s 345ms/step - loss: 0.0568 - accuracy: 0.2517 - val_loss: 0.0573 - val_accuracy: 0.2481
Epoch 124/265
5/5 [==============================] - ETA: 0s - loss: 0.0570 - accuracy: 0.2505
 (6.350824932887864, 1e-05)-DP guarantees for epoch 124 

5/5 [==============================] - 3s 359ms/step - loss: 0.0570 - accuracy: 0.2505 - val_loss: 0.0573 - val_accuracy: 0.2449
Epoch 125/265
5/5 [==============================] - ETA: 0s - loss: 0.0567 - accuracy: 0.2489
 (6.377139153079873, 1e-05)-DP guarantees for epoch 125 

5/5 [==============================] - 2s 368ms/step - loss: 0.0567 - accuracy: 0.2489 - val_loss: 0.0572 - val_accuracy: 0.2450
Epoch 126/265
5/5 [==============================] - ETA: 0s - loss: 0.0570 - accuracy: 0.2488
 (6.403453374888347, 1e-05)-DP guarantees for epoch 126 

5/5 [==============================] - 3s 349ms/step - loss: 0.0570 - accuracy: 0.2488 - val_loss: 0.0572 - val_accuracy: 0.2485
Epoch 127/265
5/5 [==============================] - ETA: 0s - loss: 0.0566 - accuracy: 0.2539
 (6.429767596763488, 1e-05)-DP guarantees for epoch 127 

5/5 [==============================] - 3s 391ms/step - loss: 0.0566 - accuracy: 0.2539 - val_loss: 0.0571 - val_accuracy: 0.2452
Epoch 128/265
5/5 [==============================] - ETA: 0s - loss: 0.0565 - accuracy: 0.2505
 (6.4560818158974875, 1e-05)-DP guarantees for epoch 128 

5/5 [==============================] - 3s 367ms/step - loss: 0.0565 - accuracy: 0.2505 - val_loss: 0.0570 - val_accuracy: 0.2466
Epoch 129/265
5/5 [==============================] - ETA: 0s - loss: 0.0566 - accuracy: 0.2522
 (6.482396036898421, 1e-05)-DP guarantees for epoch 129 

5/5 [==============================] - 2s 343ms/step - loss: 0.0566 - accuracy: 0.2522 - val_loss: 0.0570 - val_accuracy: 0.2461
Epoch 130/265
5/5 [==============================] - ETA: 0s - loss: 0.0561 - accuracy: 0.2521
 (6.5087102545452, 1e-05)-DP guarantees for epoch 130 

5/5 [==============================] - 2s 353ms/step - loss: 0.0561 - accuracy: 0.2521 - val_loss: 0.0569 - val_accuracy: 0.2468
Epoch 131/265
5/5 [==============================] - ETA: 0s - loss: 0.0562 - accuracy: 0.2534
 (6.53502447810436, 1e-05)-DP guarantees for epoch 131 

5/5 [==============================] - 2s 374ms/step - loss: 0.0562 - accuracy: 0.2534 - val_loss: 0.0569 - val_accuracy: 0.2470
Epoch 132/265
5/5 [==============================] - ETA: 0s - loss: 0.0563 - accuracy: 0.2530
 (6.5613386977335715, 1e-05)-DP guarantees for epoch 132 

5/5 [==============================] - 2s 350ms/step - loss: 0.0563 - accuracy: 0.2530 - val_loss: 0.0568 - val_accuracy: 0.2501
Epoch 133/265
5/5 [==============================] - ETA: 0s - loss: 0.0561 - accuracy: 0.2564
 (6.587652915827986, 1e-05)-DP guarantees for epoch 133 

5/5 [==============================] - 3s 368ms/step - loss: 0.0561 - accuracy: 0.2564 - val_loss: 0.0569 - val_accuracy: 0.2470
Epoch 134/265
5/5 [==============================] - ETA: 0s - loss: 0.0561 - accuracy: 0.2555
 (6.613967135260202, 1e-05)-DP guarantees for epoch 134 

5/5 [==============================] - 3s 402ms/step - loss: 0.0561 - accuracy: 0.2555 - val_loss: 0.0568 - val_accuracy: 0.2492
Epoch 135/265
5/5 [==============================] - ETA: 0s - loss: 0.0564 - accuracy: 0.2535
 (6.6402813578423405, 1e-05)-DP guarantees for epoch 135 

5/5 [==============================] - 2s 347ms/step - loss: 0.0564 - accuracy: 0.2535 - val_loss: 0.0567 - val_accuracy: 0.2499
Epoch 136/265
5/5 [==============================] - ETA: 0s - loss: 0.0559 - accuracy: 0.2552
 (6.666595582737012, 1e-05)-DP guarantees for epoch 136 

5/5 [==============================] - 2s 360ms/step - loss: 0.0559 - accuracy: 0.2552 - val_loss: 0.0567 - val_accuracy: 0.2506
Epoch 137/265
5/5 [==============================] - ETA: 0s - loss: 0.0560 - accuracy: 0.2562
 (6.692909796982604, 1e-05)-DP guarantees for epoch 137 

5/5 [==============================] - 3s 364ms/step - loss: 0.0560 - accuracy: 0.2562 - val_loss: 0.0566 - val_accuracy: 0.2484
Epoch 138/265
5/5 [==============================] - ETA: 0s - loss: 0.0560 - accuracy: 0.2538
 (6.719224016310403, 1e-05)-DP guarantees for epoch 138 

5/5 [==============================] - 2s 349ms/step - loss: 0.0560 - accuracy: 0.2538 - val_loss: 0.0565 - val_accuracy: 0.2471
Epoch 139/265
5/5 [==============================] - ETA: 0s - loss: 0.0560 - accuracy: 0.2526
 (6.74553823900151, 1e-05)-DP guarantees for epoch 139 

5/5 [==============================] - 3s 399ms/step - loss: 0.0560 - accuracy: 0.2526 - val_loss: 0.0565 - val_accuracy: 0.2509
Epoch 140/265
5/5 [==============================] - ETA: 0s - loss: 0.0560 - accuracy: 0.2536
 (6.771852459824933, 1e-05)-DP guarantees for epoch 140 

5/5 [==============================] - 3s 493ms/step - loss: 0.0560 - accuracy: 0.2536 - val_loss: 0.0564 - val_accuracy: 0.2493
Epoch 141/265
5/5 [==============================] - ETA: 0s - loss: 0.0557 - accuracy: 0.2555
 (6.798166680154963, 1e-05)-DP guarantees for epoch 141 

5/5 [==============================] - 3s 391ms/step - loss: 0.0557 - accuracy: 0.2555 - val_loss: 0.0563 - val_accuracy: 0.2511
Epoch 142/265
5/5 [==============================] - ETA: 0s - loss: 0.0559 - accuracy: 0.2541
 (6.824480898392123, 1e-05)-DP guarantees for epoch 142 

5/5 [==============================] - 3s 443ms/step - loss: 0.0559 - accuracy: 0.2541 - val_loss: 0.0563 - val_accuracy: 0.2484
Epoch 143/265
5/5 [==============================] - ETA: 0s - loss: 0.0560 - accuracy: 0.2547
 (6.850795124433479, 1e-05)-DP guarantees for epoch 143 

5/5 [==============================] - 3s 368ms/step - loss: 0.0560 - accuracy: 0.2547 - val_loss: 0.0563 - val_accuracy: 0.2487
Epoch 144/265
5/5 [==============================] - ETA: 0s - loss: 0.0556 - accuracy: 0.2545
 (6.877109344205954, 1e-05)-DP guarantees for epoch 144 

5/5 [==============================] - 3s 374ms/step - loss: 0.0556 - accuracy: 0.2545 - val_loss: 0.0562 - val_accuracy: 0.2487
Epoch 145/265
5/5 [==============================] - ETA: 0s - loss: 0.0555 - accuracy: 0.2569
 (6.903423558068683, 1e-05)-DP guarantees for epoch 145 

5/5 [==============================] - 3s 378ms/step - loss: 0.0555 - accuracy: 0.2569 - val_loss: 0.0562 - val_accuracy: 0.2508
Epoch 146/265
5/5 [==============================] - ETA: 0s - loss: 0.0558 - accuracy: 0.2560
 (6.929737777126363, 1e-05)-DP guarantees for epoch 146 

5/5 [==============================] - 3s 387ms/step - loss: 0.0558 - accuracy: 0.2560 - val_loss: 0.0561 - val_accuracy: 0.2504
Epoch 147/265
5/5 [==============================] - ETA: 0s - loss: 0.0557 - accuracy: 0.2556
 (6.956052008535497, 1e-05)-DP guarantees for epoch 147 

5/5 [==============================] - 3s 372ms/step - loss: 0.0557 - accuracy: 0.2556 - val_loss: 0.0561 - val_accuracy: 0.2509
Epoch 148/265
5/5 [==============================] - ETA: 0s - loss: 0.0557 - accuracy: 0.2538
 (6.982366223228706, 1e-05)-DP guarantees for epoch 148 

5/5 [==============================] - 3s 381ms/step - loss: 0.0557 - accuracy: 0.2538 - val_loss: 0.0561 - val_accuracy: 0.2528
Epoch 149/265
5/5 [==============================] - ETA: 0s - loss: 0.0553 - accuracy: 0.2580
 (7.0086804403647855, 1e-05)-DP guarantees for epoch 149 

5/5 [==============================] - 3s 357ms/step - loss: 0.0553 - accuracy: 0.2580 - val_loss: 0.0560 - val_accuracy: 0.2530
Epoch 150/265
5/5 [==============================] - ETA: 0s - loss: 0.0549 - accuracy: 0.2595
 (7.034994664689931, 1e-05)-DP guarantees for epoch 150 

5/5 [==============================] - 3s 361ms/step - loss: 0.0549 - accuracy: 0.2595 - val_loss: 0.0560 - val_accuracy: 0.2519
Epoch 151/265
5/5 [==============================] - ETA: 0s - loss: 0.0554 - accuracy: 0.2585
 (7.061308885525292, 1e-05)-DP guarantees for epoch 151 

5/5 [==============================] - 2s 355ms/step - loss: 0.0554 - accuracy: 0.2585 - val_loss: 0.0559 - val_accuracy: 0.2531
Epoch 152/265
5/5 [==============================] - ETA: 0s - loss: 0.0554 - accuracy: 0.2580
 (7.087623106633284, 1e-05)-DP guarantees for epoch 152 

5/5 [==============================] - 2s 355ms/step - loss: 0.0554 - accuracy: 0.2580 - val_loss: 0.0558 - val_accuracy: 0.2543
Epoch 153/265
5/5 [==============================] - ETA: 0s - loss: 0.0553 - accuracy: 0.2585
 (7.113937323136563, 1e-05)-DP guarantees for epoch 153 

5/5 [==============================] - 3s 365ms/step - loss: 0.0553 - accuracy: 0.2585 - val_loss: 0.0558 - val_accuracy: 0.2537
Epoch 154/265
5/5 [==============================] - ETA: 0s - loss: 0.0551 - accuracy: 0.2595
 (7.140251544398778, 1e-05)-DP guarantees for epoch 154 

5/5 [==============================] - 3s 359ms/step - loss: 0.0551 - accuracy: 0.2595 - val_loss: 0.0558 - val_accuracy: 0.2551
Epoch 155/265
5/5 [==============================] - ETA: 0s - loss: 0.0550 - accuracy: 0.2600
 (7.166565767658498, 1e-05)-DP guarantees for epoch 155 

5/5 [==============================] - 3s 355ms/step - loss: 0.0550 - accuracy: 0.2600 - val_loss: 0.0557 - val_accuracy: 0.2569
Epoch 156/265
5/5 [==============================] - ETA: 0s - loss: 0.0553 - accuracy: 0.2561
 (7.192879981310637, 1e-05)-DP guarantees for epoch 156 

5/5 [==============================] - 2s 353ms/step - loss: 0.0553 - accuracy: 0.2561 - val_loss: 0.0556 - val_accuracy: 0.2545
Epoch 157/265
5/5 [==============================] - ETA: 0s - loss: 0.0550 - accuracy: 0.2581
 (7.2191942080187195, 1e-05)-DP guarantees for epoch 157 

5/5 [==============================] - 3s 356ms/step - loss: 0.0550 - accuracy: 0.2581 - val_loss: 0.0556 - val_accuracy: 0.2566
Epoch 158/265
5/5 [==============================] - ETA: 0s - loss: 0.0550 - accuracy: 0.2601
 (7.245508431022666, 1e-05)-DP guarantees for epoch 158 

5/5 [==============================] - 2s 353ms/step - loss: 0.0550 - accuracy: 0.2601 - val_loss: 0.0556 - val_accuracy: 0.2574
Epoch 159/265
5/5 [==============================] - ETA: 0s - loss: 0.0548 - accuracy: 0.2599
 (7.27182264840541, 1e-05)-DP guarantees for epoch 159 

5/5 [==============================] - 2s 343ms/step - loss: 0.0548 - accuracy: 0.2599 - val_loss: 0.0555 - val_accuracy: 0.2567
Epoch 160/265
5/5 [==============================] - ETA: 0s - loss: 0.0548 - accuracy: 0.2616
 (7.298136867745498, 1e-05)-DP guarantees for epoch 160 

5/5 [==============================] - 2s 367ms/step - loss: 0.0548 - accuracy: 0.2616 - val_loss: 0.0554 - val_accuracy: 0.2560
Epoch 161/265
5/5 [==============================] - ETA: 0s - loss: 0.0551 - accuracy: 0.2595
 (7.324451088022072, 1e-05)-DP guarantees for epoch 161 

5/5 [==============================] - 3s 349ms/step - loss: 0.0551 - accuracy: 0.2595 - val_loss: 0.0554 - val_accuracy: 0.2577
Epoch 162/265
5/5 [==============================] - ETA: 0s - loss: 0.0548 - accuracy: 0.2606
 (7.350765305854425, 1e-05)-DP guarantees for epoch 162 

5/5 [==============================] - 2s 352ms/step - loss: 0.0548 - accuracy: 0.2606 - val_loss: 0.0554 - val_accuracy: 0.2580
Epoch 163/265
5/5 [==============================] - ETA: 0s - loss: 0.0547 - accuracy: 0.2588
 (7.37707952170881, 1e-05)-DP guarantees for epoch 163 

5/5 [==============================] - 2s 351ms/step - loss: 0.0547 - accuracy: 0.2588 - val_loss: 0.0553 - val_accuracy: 0.2549
Epoch 164/265
5/5 [==============================] - ETA: 0s - loss: 0.0546 - accuracy: 0.2585
 (7.403393741099066, 1e-05)-DP guarantees for epoch 164 

5/5 [==============================] - 3s 379ms/step - loss: 0.0546 - accuracy: 0.2585 - val_loss: 0.0553 - val_accuracy: 0.2591
Epoch 165/265
5/5 [==============================] - ETA: 0s - loss: 0.0546 - accuracy: 0.2607
 (7.429707969366283, 1e-05)-DP guarantees for epoch 165 

5/5 [==============================] - 3s 368ms/step - loss: 0.0546 - accuracy: 0.2607 - val_loss: 0.0552 - val_accuracy: 0.2574
Epoch 166/265
5/5 [==============================] - ETA: 0s - loss: 0.0547 - accuracy: 0.2598
 (7.456022189620042, 1e-05)-DP guarantees for epoch 166 

5/5 [==============================] - 2s 356ms/step - loss: 0.0547 - accuracy: 0.2598 - val_loss: 0.0551 - val_accuracy: 0.2544
Epoch 167/265
5/5 [==============================] - ETA: 0s - loss: 0.0544 - accuracy: 0.2589
 (7.4823364015791975, 1e-05)-DP guarantees for epoch 167 

5/5 [==============================] - 2s 343ms/step - loss: 0.0544 - accuracy: 0.2589 - val_loss: 0.0552 - val_accuracy: 0.2570
Epoch 168/265
5/5 [==============================] - ETA: 0s - loss: 0.0546 - accuracy: 0.2620
 (7.508650622437409, 1e-05)-DP guarantees for epoch 168 

5/5 [==============================] - 2s 343ms/step - loss: 0.0546 - accuracy: 0.2620 - val_loss: 0.0551 - val_accuracy: 0.2585
Epoch 169/265
5/5 [==============================] - ETA: 0s - loss: 0.0544 - accuracy: 0.2609
 (7.5349648424170645, 1e-05)-DP guarantees for epoch 169 

5/5 [==============================] - 3s 371ms/step - loss: 0.0544 - accuracy: 0.2609 - val_loss: 0.0550 - val_accuracy: 0.2591
Epoch 170/265
5/5 [==============================] - ETA: 0s - loss: 0.0545 - accuracy: 0.2618
 (7.561279065737033, 1e-05)-DP guarantees for epoch 170 

5/5 [==============================] - 3s 369ms/step - loss: 0.0545 - accuracy: 0.2618 - val_loss: 0.0551 - val_accuracy: 0.2582
Epoch 171/265
5/5 [==============================] - ETA: 0s - loss: 0.0542 - accuracy: 0.2642
 (7.587593290867159, 1e-05)-DP guarantees for epoch 171 

5/5 [==============================] - 3s 372ms/step - loss: 0.0542 - accuracy: 0.2642 - val_loss: 0.0551 - val_accuracy: 0.2598
Epoch 172/265
5/5 [==============================] - ETA: 0s - loss: 0.0543 - accuracy: 0.2640
 (7.613907506714526, 1e-05)-DP guarantees for epoch 172 

5/5 [==============================] - 3s 369ms/step - loss: 0.0543 - accuracy: 0.2640 - val_loss: 0.0550 - val_accuracy: 0.2604
Epoch 173/265
5/5 [==============================] - ETA: 0s - loss: 0.0543 - accuracy: 0.2642
 (7.640221723584304, 1e-05)-DP guarantees for epoch 173 

5/5 [==============================] - 3s 359ms/step - loss: 0.0543 - accuracy: 0.2642 - val_loss: 0.0549 - val_accuracy: 0.2604
Epoch 174/265
5/5 [==============================] - ETA: 0s - loss: 0.0542 - accuracy: 0.2635
 (7.666535950048996, 1e-05)-DP guarantees for epoch 174 

5/5 [==============================] - 2s 344ms/step - loss: 0.0542 - accuracy: 0.2635 - val_loss: 0.0549 - val_accuracy: 0.2628
Epoch 175/265
5/5 [==============================] - ETA: 0s - loss: 0.0541 - accuracy: 0.2648
 (7.692850164248792, 1e-05)-DP guarantees for epoch 175 

5/5 [==============================] - 2s 358ms/step - loss: 0.0541 - accuracy: 0.2648 - val_loss: 0.0548 - val_accuracy: 0.2625
Epoch 176/265
5/5 [==============================] - ETA: 0s - loss: 0.0542 - accuracy: 0.2637
 (7.719164393302542, 1e-05)-DP guarantees for epoch 176 

5/5 [==============================] - 2s 358ms/step - loss: 0.0542 - accuracy: 0.2637 - val_loss: 0.0547 - val_accuracy: 0.2621
Epoch 177/265
5/5 [==============================] - ETA: 0s - loss: 0.0540 - accuracy: 0.2661
 (7.745478613553454, 1e-05)-DP guarantees for epoch 177 

5/5 [==============================] - 2s 351ms/step - loss: 0.0540 - accuracy: 0.2661 - val_loss: 0.0546 - val_accuracy: 0.2665
Epoch 178/265
5/5 [==============================] - ETA: 0s - loss: 0.0541 - accuracy: 0.2668
 (7.771792822684058, 1e-05)-DP guarantees for epoch 178 

5/5 [==============================] - 2s 353ms/step - loss: 0.0541 - accuracy: 0.2668 - val_loss: 0.0546 - val_accuracy: 0.2659
Epoch 179/265
5/5 [==============================] - ETA: 0s - loss: 0.0539 - accuracy: 0.2685
 (7.7981070469012, 1e-05)-DP guarantees for epoch 179 

5/5 [==============================] - 2s 357ms/step - loss: 0.0539 - accuracy: 0.2685 - val_loss: 0.0545 - val_accuracy: 0.2646
Epoch 180/265
5/5 [==============================] - ETA: 0s - loss: 0.0538 - accuracy: 0.2682
 (7.824421268798268, 1e-05)-DP guarantees for epoch 180 

5/5 [==============================] - 2s 352ms/step - loss: 0.0538 - accuracy: 0.2682 - val_loss: 0.0545 - val_accuracy: 0.2656
Epoch 181/265
5/5 [==============================] - ETA: 0s - loss: 0.0538 - accuracy: 0.2671
 (7.850735498247861, 1e-05)-DP guarantees for epoch 181 

5/5 [==============================] - 2s 358ms/step - loss: 0.0538 - accuracy: 0.2671 - val_loss: 0.0545 - val_accuracy: 0.2639
Epoch 182/265
5/5 [==============================] - ETA: 0s - loss: 0.0539 - accuracy: 0.2661
 (7.877049711425853, 1e-05)-DP guarantees for epoch 182 

5/5 [==============================] - 3s 368ms/step - loss: 0.0539 - accuracy: 0.2661 - val_loss: 0.0544 - val_accuracy: 0.2645
Epoch 183/265
5/5 [==============================] - ETA: 0s - loss: 0.0537 - accuracy: 0.2635
 (7.903363929529842, 1e-05)-DP guarantees for epoch 183 

5/5 [==============================] - 3s 356ms/step - loss: 0.0537 - accuracy: 0.2635 - val_loss: 0.0544 - val_accuracy: 0.2645
Epoch 184/265
5/5 [==============================] - ETA: 0s - loss: 0.0538 - accuracy: 0.2641
 (7.929678153587394, 1e-05)-DP guarantees for epoch 184 

5/5 [==============================] - 3s 361ms/step - loss: 0.0538 - accuracy: 0.2641 - val_loss: 0.0543 - val_accuracy: 0.2641
Epoch 185/265
5/5 [==============================] - ETA: 0s - loss: 0.0535 - accuracy: 0.2668
 (7.955992381685565, 1e-05)-DP guarantees for epoch 185 

5/5 [==============================] - 2s 348ms/step - loss: 0.0535 - accuracy: 0.2668 - val_loss: 0.0543 - val_accuracy: 0.2638
Epoch 186/265
5/5 [==============================] - ETA: 0s - loss: 0.0535 - accuracy: 0.2641
 (7.982306589145621, 1e-05)-DP guarantees for epoch 186 

5/5 [==============================] - 3s 357ms/step - loss: 0.0535 - accuracy: 0.2641 - val_loss: 0.0543 - val_accuracy: 0.2654
Epoch 187/265
5/5 [==============================] - ETA: 0s - loss: 0.0537 - accuracy: 0.2653
 (8.008620808026855, 1e-05)-DP guarantees for epoch 187 

5/5 [==============================] - 3s 412ms/step - loss: 0.0537 - accuracy: 0.2653 - val_loss: 0.0542 - val_accuracy: 0.2651
Epoch 188/265
5/5 [==============================] - ETA: 0s - loss: 0.0535 - accuracy: 0.2656
 (8.034935029136395, 1e-05)-DP guarantees for epoch 188 

5/5 [==============================] - 3s 488ms/step - loss: 0.0535 - accuracy: 0.2656 - val_loss: 0.0542 - val_accuracy: 0.2662
Epoch 189/265
5/5 [==============================] - ETA: 0s - loss: 0.0536 - accuracy: 0.2653
 (8.061249248434443, 1e-05)-DP guarantees for epoch 189 

5/5 [==============================] - 3s 444ms/step - loss: 0.0536 - accuracy: 0.2653 - val_loss: 0.0541 - val_accuracy: 0.2659
Epoch 190/265
5/5 [==============================] - ETA: 0s - loss: 0.0533 - accuracy: 0.2676
 (8.087563469816706, 1e-05)-DP guarantees for epoch 190 

5/5 [==============================] - 3s 405ms/step - loss: 0.0533 - accuracy: 0.2676 - val_loss: 0.0541 - val_accuracy: 0.2663
Epoch 191/265
5/5 [==============================] - ETA: 0s - loss: 0.0534 - accuracy: 0.2669
 (8.113877688170744, 1e-05)-DP guarantees for epoch 191 

5/5 [==============================] - 3s 385ms/step - loss: 0.0534 - accuracy: 0.2669 - val_loss: 0.0541 - val_accuracy: 0.2675
Epoch 192/265
5/5 [==============================] - ETA: 0s - loss: 0.0535 - accuracy: 0.2648
 (8.140191906358039, 1e-05)-DP guarantees for epoch 192 

5/5 [==============================] - 3s 392ms/step - loss: 0.0535 - accuracy: 0.2648 - val_loss: 0.0540 - val_accuracy: 0.2676
Epoch 193/265
5/5 [==============================] - ETA: 0s - loss: 0.0534 - accuracy: 0.2680
 (8.166506132866681, 1e-05)-DP guarantees for epoch 193 

5/5 [==============================] - 3s 379ms/step - loss: 0.0534 - accuracy: 0.2680 - val_loss: 0.0540 - val_accuracy: 0.2676
Epoch 194/265
5/5 [==============================] - ETA: 0s - loss: 0.0533 - accuracy: 0.2654
 (8.192820350846777, 1e-05)-DP guarantees for epoch 194 

5/5 [==============================] - 2s 356ms/step - loss: 0.0533 - accuracy: 0.2654 - val_loss: 0.0540 - val_accuracy: 0.2679
Epoch 195/265
5/5 [==============================] - ETA: 0s - loss: 0.0531 - accuracy: 0.2681
 (8.219134573417037, 1e-05)-DP guarantees for epoch 195 

5/5 [==============================] - 3s 381ms/step - loss: 0.0531 - accuracy: 0.2681 - val_loss: 0.0541 - val_accuracy: 0.2654
Epoch 196/265
5/5 [==============================] - ETA: 0s - loss: 0.0532 - accuracy: 0.2671
 (8.24544879099129, 1e-05)-DP guarantees for epoch 196 

5/5 [==============================] - 3s 381ms/step - loss: 0.0532 - accuracy: 0.2671 - val_loss: 0.0540 - val_accuracy: 0.2658
Epoch 197/265
5/5 [==============================] - ETA: 0s - loss: 0.0535 - accuracy: 0.2666
 (8.271763016196239, 1e-05)-DP guarantees for epoch 197 

5/5 [==============================] - 3s 389ms/step - loss: 0.0535 - accuracy: 0.2666 - val_loss: 0.0540 - val_accuracy: 0.2656
Epoch 198/265
5/5 [==============================] - ETA: 0s - loss: 0.0534 - accuracy: 0.2676
 (8.298077232897459, 1e-05)-DP guarantees for epoch 198 

5/5 [==============================] - 3s 415ms/step - loss: 0.0534 - accuracy: 0.2676 - val_loss: 0.0539 - val_accuracy: 0.2656
Epoch 199/265
5/5 [==============================] - ETA: 0s - loss: 0.0531 - accuracy: 0.2672
 (8.324391446543665, 1e-05)-DP guarantees for epoch 199 

5/5 [==============================] - 3s 380ms/step - loss: 0.0531 - accuracy: 0.2672 - val_loss: 0.0538 - val_accuracy: 0.2658
Epoch 200/265
5/5 [==============================] - ETA: 0s - loss: 0.0534 - accuracy: 0.2638
 (8.350705669706155, 1e-05)-DP guarantees for epoch 200 

5/5 [==============================] - 2s 358ms/step - loss: 0.0534 - accuracy: 0.2638 - val_loss: 0.0538 - val_accuracy: 0.2659
Epoch 201/265
5/5 [==============================] - ETA: 0s - loss: 0.0533 - accuracy: 0.2672
 (8.377019893272927, 1e-05)-DP guarantees for epoch 201 

5/5 [==============================] - 2s 369ms/step - loss: 0.0533 - accuracy: 0.2672 - val_loss: 0.0538 - val_accuracy: 0.2678
Epoch 202/265
5/5 [==============================] - ETA: 0s - loss: 0.0533 - accuracy: 0.2685
 (8.403334112768452, 1e-05)-DP guarantees for epoch 202 

5/5 [==============================] - 3s 362ms/step - loss: 0.0533 - accuracy: 0.2685 - val_loss: 0.0537 - val_accuracy: 0.2677
Epoch 203/265
5/5 [==============================] - ETA: 0s - loss: 0.0528 - accuracy: 0.2701
 (8.429648329088547, 1e-05)-DP guarantees for epoch 203 

5/5 [==============================] - 2s 351ms/step - loss: 0.0528 - accuracy: 0.2701 - val_loss: 0.0537 - val_accuracy: 0.2669
Epoch 204/265
5/5 [==============================] - ETA: 0s - loss: 0.0528 - accuracy: 0.2696
 (8.455962556505566, 1e-05)-DP guarantees for epoch 204 

5/5 [==============================] - 2s 344ms/step - loss: 0.0528 - accuracy: 0.2696 - val_loss: 0.0537 - val_accuracy: 0.2681
Epoch 205/265
5/5 [==============================] - ETA: 0s - loss: 0.0532 - accuracy: 0.2691
 (8.4822767745793, 1e-05)-DP guarantees for epoch 205 

5/5 [==============================] - 2s 348ms/step - loss: 0.0532 - accuracy: 0.2691 - val_loss: 0.0536 - val_accuracy: 0.2692
Epoch 206/265
5/5 [==============================] - ETA: 0s - loss: 0.0531 - accuracy: 0.2703
 (8.508590990133396, 1e-05)-DP guarantees for epoch 206 

5/5 [==============================] - 3s 354ms/step - loss: 0.0531 - accuracy: 0.2703 - val_loss: 0.0535 - val_accuracy: 0.2683
Epoch 207/265
5/5 [==============================] - ETA: 0s - loss: 0.0529 - accuracy: 0.2705
 (8.534905221654196, 1e-05)-DP guarantees for epoch 207 

5/5 [==============================] - 3s 348ms/step - loss: 0.0529 - accuracy: 0.2705 - val_loss: 0.0535 - val_accuracy: 0.2661
Epoch 208/265
5/5 [==============================] - ETA: 0s - loss: 0.0526 - accuracy: 0.2726
 (8.56121943210842, 1e-05)-DP guarantees for epoch 208 

5/5 [==============================] - 2s 351ms/step - loss: 0.0526 - accuracy: 0.2726 - val_loss: 0.0535 - val_accuracy: 0.2671
Epoch 209/265
5/5 [==============================] - ETA: 0s - loss: 0.0530 - accuracy: 0.2703
 (8.58753364829852, 1e-05)-DP guarantees for epoch 209 

5/5 [==============================] - 2s 350ms/step - loss: 0.0530 - accuracy: 0.2703 - val_loss: 0.0534 - val_accuracy: 0.2691
Epoch 210/265
5/5 [==============================] - ETA: 0s - loss: 0.0527 - accuracy: 0.2701
 (8.613847875406321, 1e-05)-DP guarantees for epoch 210 

5/5 [==============================] - 2s 344ms/step - loss: 0.0527 - accuracy: 0.2701 - val_loss: 0.0534 - val_accuracy: 0.2676
Epoch 211/265
5/5 [==============================] - ETA: 0s - loss: 0.0525 - accuracy: 0.2713
 (8.640162093797892, 1e-05)-DP guarantees for epoch 211 

5/5 [==============================] - 3s 350ms/step - loss: 0.0525 - accuracy: 0.2713 - val_loss: 0.0534 - val_accuracy: 0.2689
Epoch 212/265
5/5 [==============================] - ETA: 0s - loss: 0.0527 - accuracy: 0.2711
 (8.666476313556027, 1e-05)-DP guarantees for epoch 212 

5/5 [==============================] - 2s 346ms/step - loss: 0.0527 - accuracy: 0.2711 - val_loss: 0.0533 - val_accuracy: 0.2679
Epoch 213/265
5/5 [==============================] - ETA: 0s - loss: 0.0524 - accuracy: 0.2722
 (8.692790541337777, 1e-05)-DP guarantees for epoch 213 

5/5 [==============================] - 3s 356ms/step - loss: 0.0524 - accuracy: 0.2722 - val_loss: 0.0532 - val_accuracy: 0.2673
Epoch 214/265
5/5 [==============================] - ETA: 0s - loss: 0.0526 - accuracy: 0.2705
 (8.719104752659717, 1e-05)-DP guarantees for epoch 214 

5/5 [==============================] - 3s 355ms/step - loss: 0.0526 - accuracy: 0.2705 - val_loss: 0.0532 - val_accuracy: 0.2675
Epoch 215/265
5/5 [==============================] - ETA: 0s - loss: 0.0523 - accuracy: 0.2729
 (8.745418971706883, 1e-05)-DP guarantees for epoch 215 

5/5 [==============================] - 3s 359ms/step - loss: 0.0523 - accuracy: 0.2729 - val_loss: 0.0532 - val_accuracy: 0.2674
Epoch 216/265
5/5 [==============================] - ETA: 0s - loss: 0.0525 - accuracy: 0.2733
 (8.77173318977154, 1e-05)-DP guarantees for epoch 216 

5/5 [==============================] - 3s 362ms/step - loss: 0.0525 - accuracy: 0.2733 - val_loss: 0.0532 - val_accuracy: 0.2662
Epoch 217/265
5/5 [==============================] - ETA: 0s - loss: 0.0525 - accuracy: 0.2719
 (8.798047413801395, 1e-05)-DP guarantees for epoch 217 

5/5 [==============================] - 3s 353ms/step - loss: 0.0525 - accuracy: 0.2719 - val_loss: 0.0531 - val_accuracy: 0.2676
Epoch 218/265
5/5 [==============================] - ETA: 0s - loss: 0.0524 - accuracy: 0.2741
 (8.82436163499698, 1e-05)-DP guarantees for epoch 218 

5/5 [==============================] - 2s 348ms/step - loss: 0.0524 - accuracy: 0.2741 - val_loss: 0.0531 - val_accuracy: 0.2671
Epoch 219/265
5/5 [==============================] - ETA: 0s - loss: 0.0525 - accuracy: 0.2702
 (8.850675857122916, 1e-05)-DP guarantees for epoch 219 

5/5 [==============================] - 3s 386ms/step - loss: 0.0525 - accuracy: 0.2702 - val_loss: 0.0531 - val_accuracy: 0.2672
Epoch 220/265
5/5 [==============================] - ETA: 0s - loss: 0.0527 - accuracy: 0.2709
 (8.876990076626331, 1e-05)-DP guarantees for epoch 220 

5/5 [==============================] - 3s 376ms/step - loss: 0.0527 - accuracy: 0.2709 - val_loss: 0.0531 - val_accuracy: 0.2668
Epoch 221/265
5/5 [==============================] - ETA: 0s - loss: 0.0525 - accuracy: 0.2715
 (8.903304291167267, 1e-05)-DP guarantees for epoch 221 

5/5 [==============================] - 3s 363ms/step - loss: 0.0525 - accuracy: 0.2715 - val_loss: 0.0531 - val_accuracy: 0.2661
Epoch 222/265
5/5 [==============================] - ETA: 0s - loss: 0.0524 - accuracy: 0.2721
 (8.929618511328595, 1e-05)-DP guarantees for epoch 222 

5/5 [==============================] - 3s 378ms/step - loss: 0.0524 - accuracy: 0.2721 - val_loss: 0.0530 - val_accuracy: 0.2677
Epoch 223/265
5/5 [==============================] - ETA: 0s - loss: 0.0521 - accuracy: 0.2726
 (8.955932731489924, 1e-05)-DP guarantees for epoch 223 

5/5 [==============================] - 2s 353ms/step - loss: 0.0521 - accuracy: 0.2726 - val_loss: 0.0530 - val_accuracy: 0.2686
Epoch 224/265
5/5 [==============================] - ETA: 0s - loss: 0.0521 - accuracy: 0.2727
 (8.982246951651252, 1e-05)-DP guarantees for epoch 224 

5/5 [==============================] - 2s 350ms/step - loss: 0.0521 - accuracy: 0.2727 - val_loss: 0.0530 - val_accuracy: 0.2690
Epoch 225/265
5/5 [==============================] - ETA: 0s - loss: 0.0522 - accuracy: 0.2706
 (9.00856117181258, 1e-05)-DP guarantees for epoch 225 

5/5 [==============================] - 3s 353ms/step - loss: 0.0522 - accuracy: 0.2706 - val_loss: 0.0529 - val_accuracy: 0.2701
Epoch 226/265
5/5 [==============================] - ETA: 0s - loss: 0.0521 - accuracy: 0.2715
 (9.034875391973909, 1e-05)-DP guarantees for epoch 226 

5/5 [==============================] - 3s 396ms/step - loss: 0.0521 - accuracy: 0.2715 - val_loss: 0.0529 - val_accuracy: 0.2690
Epoch 227/265
5/5 [==============================] - ETA: 0s - loss: 0.0521 - accuracy: 0.2713
 (9.061189612135239, 1e-05)-DP guarantees for epoch 227 

5/5 [==============================] - 3s 365ms/step - loss: 0.0521 - accuracy: 0.2713 - val_loss: 0.0529 - val_accuracy: 0.2702
Epoch 228/265
5/5 [==============================] - ETA: 0s - loss: 0.0520 - accuracy: 0.2729
 (9.087503832296568, 1e-05)-DP guarantees for epoch 228 

5/5 [==============================] - 3s 366ms/step - loss: 0.0520 - accuracy: 0.2729 - val_loss: 0.0529 - val_accuracy: 0.2698
Epoch 229/265
5/5 [==============================] - ETA: 0s - loss: 0.0518 - accuracy: 0.2717
 (9.113818052457898, 1e-05)-DP guarantees for epoch 229 

5/5 [==============================] - 3s 364ms/step - loss: 0.0518 - accuracy: 0.2717 - val_loss: 0.0528 - val_accuracy: 0.2704
Epoch 230/265
5/5 [==============================] - ETA: 0s - loss: 0.0518 - accuracy: 0.2710
 (9.140132272619226, 1e-05)-DP guarantees for epoch 230 

5/5 [==============================] - 3s 371ms/step - loss: 0.0518 - accuracy: 0.2710 - val_loss: 0.0528 - val_accuracy: 0.2693
Epoch 231/265
5/5 [==============================] - ETA: 0s - loss: 0.0519 - accuracy: 0.2725
 (9.166446492780555, 1e-05)-DP guarantees for epoch 231 

5/5 [==============================] - 2s 357ms/step - loss: 0.0519 - accuracy: 0.2725 - val_loss: 0.0528 - val_accuracy: 0.2674
Epoch 232/265
5/5 [==============================] - ETA: 0s - loss: 0.0517 - accuracy: 0.2743
 (9.192760712941883, 1e-05)-DP guarantees for epoch 232 

5/5 [==============================] - 3s 361ms/step - loss: 0.0517 - accuracy: 0.2743 - val_loss: 0.0528 - val_accuracy: 0.2685
Epoch 233/265
5/5 [==============================] - ETA: 0s - loss: 0.0519 - accuracy: 0.2712
 (9.219074933103212, 1e-05)-DP guarantees for epoch 233 

5/5 [==============================] - 3s 353ms/step - loss: 0.0519 - accuracy: 0.2712 - val_loss: 0.0527 - val_accuracy: 0.2687
Epoch 234/265
5/5 [==============================] - ETA: 0s - loss: 0.0517 - accuracy: 0.2731
 (9.24538915326454, 1e-05)-DP guarantees for epoch 234 

5/5 [==============================] - 3s 370ms/step - loss: 0.0517 - accuracy: 0.2731 - val_loss: 0.0527 - val_accuracy: 0.2663
Epoch 235/265
5/5 [==============================] - ETA: 0s - loss: 0.0518 - accuracy: 0.2720
 (9.27170337342587, 1e-05)-DP guarantees for epoch 235 

5/5 [==============================] - 3s 350ms/step - loss: 0.0518 - accuracy: 0.2720 - val_loss: 0.0527 - val_accuracy: 0.2663
Epoch 236/265
5/5 [==============================] - ETA: 0s - loss: 0.0515 - accuracy: 0.2729
 (9.298017593587199, 1e-05)-DP guarantees for epoch 236 

5/5 [==============================] - 2s 352ms/step - loss: 0.0515 - accuracy: 0.2729 - val_loss: 0.0526 - val_accuracy: 0.2658
Epoch 237/265
5/5 [==============================] - ETA: 0s - loss: 0.0517 - accuracy: 0.2726
 (9.324331813748529, 1e-05)-DP guarantees for epoch 237 

5/5 [==============================] - 2s 353ms/step - loss: 0.0517 - accuracy: 0.2726 - val_loss: 0.0526 - val_accuracy: 0.2650
Epoch 238/265
5/5 [==============================] - ETA: 0s - loss: 0.0515 - accuracy: 0.2752
 (9.350646033909857, 1e-05)-DP guarantees for epoch 238 

5/5 [==============================] - 3s 357ms/step - loss: 0.0515 - accuracy: 0.2752 - val_loss: 0.0525 - val_accuracy: 0.2655
Epoch 239/265
5/5 [==============================] - ETA: 0s - loss: 0.0517 - accuracy: 0.2739
 (9.376960254071186, 1e-05)-DP guarantees for epoch 239 

5/5 [==============================] - 3s 368ms/step - loss: 0.0517 - accuracy: 0.2739 - val_loss: 0.0525 - val_accuracy: 0.2665
Epoch 240/265
5/5 [==============================] - ETA: 0s - loss: 0.0515 - accuracy: 0.2736
 (9.403274474232514, 1e-05)-DP guarantees for epoch 240 

5/5 [==============================] - 3s 356ms/step - loss: 0.0515 - accuracy: 0.2736 - val_loss: 0.0525 - val_accuracy: 0.2673
Epoch 241/265
5/5 [==============================] - ETA: 0s - loss: 0.0517 - accuracy: 0.2729
 (9.429588694393843, 1e-05)-DP guarantees for epoch 241 

5/5 [==============================] - 3s 364ms/step - loss: 0.0517 - accuracy: 0.2729 - val_loss: 0.0524 - val_accuracy: 0.2674
Epoch 242/265
5/5 [==============================] - ETA: 0s - loss: 0.0518 - accuracy: 0.2746
 (9.455902914555171, 1e-05)-DP guarantees for epoch 242 

5/5 [==============================] - 3s 359ms/step - loss: 0.0518 - accuracy: 0.2746 - val_loss: 0.0525 - val_accuracy: 0.2694
Epoch 243/265
5/5 [==============================] - ETA: 0s - loss: 0.0515 - accuracy: 0.2756
 (9.482217134716501, 1e-05)-DP guarantees for epoch 243 

5/5 [==============================] - 2s 357ms/step - loss: 0.0515 - accuracy: 0.2756 - val_loss: 0.0524 - val_accuracy: 0.2699
Epoch 244/265
5/5 [==============================] - ETA: 0s - loss: 0.0512 - accuracy: 0.2760
 (9.50853135487783, 1e-05)-DP guarantees for epoch 244 

5/5 [==============================] - 3s 367ms/step - loss: 0.0512 - accuracy: 0.2760 - val_loss: 0.0524 - val_accuracy: 0.2712
Epoch 245/265
5/5 [==============================] - ETA: 0s - loss: 0.0514 - accuracy: 0.2756
 (9.534845575173634, 1e-05)-DP guarantees for epoch 245 

5/5 [==============================] - 3s 360ms/step - loss: 0.0514 - accuracy: 0.2756 - val_loss: 0.0523 - val_accuracy: 0.2700
Epoch 246/265
5/5 [==============================] - ETA: 0s - loss: 0.0512 - accuracy: 0.2758
 (9.561159795911662, 1e-05)-DP guarantees for epoch 246 

5/5 [==============================] - 2s 344ms/step - loss: 0.0512 - accuracy: 0.2758 - val_loss: 0.0523 - val_accuracy: 0.2716
Epoch 247/265
5/5 [==============================] - ETA: 0s - loss: 0.0512 - accuracy: 0.2783
 (9.587474015660208, 1e-05)-DP guarantees for epoch 247 

5/5 [==============================] - 2s 352ms/step - loss: 0.0512 - accuracy: 0.2783 - val_loss: 0.0523 - val_accuracy: 0.2719
Epoch 248/265
5/5 [==============================] - ETA: 0s - loss: 0.0514 - accuracy: 0.2768
 (9.613788235533915, 1e-05)-DP guarantees for epoch 248 

5/5 [==============================] - 3s 366ms/step - loss: 0.0514 - accuracy: 0.2768 - val_loss: 0.0522 - val_accuracy: 0.2711
Epoch 249/265
5/5 [==============================] - ETA: 0s - loss: 0.0511 - accuracy: 0.2780
 (9.64006012187098, 1e-05)-DP guarantees for epoch 249 

5/5 [==============================] - 2s 352ms/step - loss: 0.0511 - accuracy: 0.2780 - val_loss: 0.0522 - val_accuracy: 0.2720
Epoch 250/265
5/5 [==============================] - ETA: 0s - loss: 0.0511 - accuracy: 0.2746
 (9.665736679745127, 1e-05)-DP guarantees for epoch 250 

5/5 [==============================] - 3s 352ms/step - loss: 0.0511 - accuracy: 0.2746 - val_loss: 0.0522 - val_accuracy: 0.2731
Epoch 251/265
5/5 [==============================] - ETA: 0s - loss: 0.0509 - accuracy: 0.2777
 (9.690604545814235, 1e-05)-DP guarantees for epoch 251 

5/5 [==============================] - 3s 357ms/step - loss: 0.0509 - accuracy: 0.2777 - val_loss: 0.0522 - val_accuracy: 0.2727
Epoch 252/265
5/5 [==============================] - ETA: 0s - loss: 0.0511 - accuracy: 0.2793
 (9.714604392289775, 1e-05)-DP guarantees for epoch 252 

5/5 [==============================] - 3s 354ms/step - loss: 0.0511 - accuracy: 0.2793 - val_loss: 0.0522 - val_accuracy: 0.2701
Epoch 253/265
5/5 [==============================] - ETA: 0s - loss: 0.0511 - accuracy: 0.2751
 (9.737670917278972, 1e-05)-DP guarantees for epoch 253 

5/5 [==============================] - 3s 354ms/step - loss: 0.0511 - accuracy: 0.2751 - val_loss: 0.0522 - val_accuracy: 0.2719
Epoch 254/265
5/5 [==============================] - ETA: 0s - loss: 0.0510 - accuracy: 0.2764
 (9.759732027763015, 1e-05)-DP guarantees for epoch 254 

5/5 [==============================] - 3s 365ms/step - loss: 0.0510 - accuracy: 0.2764 - val_loss: 0.0522 - val_accuracy: 0.2718
Epoch 255/265
5/5 [==============================] - ETA: 0s - loss: 0.0510 - accuracy: 0.2765
 (9.780707877727917, 1e-05)-DP guarantees for epoch 255 

5/5 [==============================] - 3s 341ms/step - loss: 0.0510 - accuracy: 0.2765 - val_loss: 0.0522 - val_accuracy: 0.2708
Epoch 256/265
5/5 [==============================] - ETA: 0s - loss: 0.0511 - accuracy: 0.2758
 (9.80055660088896, 1e-05)-DP guarantees for epoch 256 

5/5 [==============================] - 3s 364ms/step - loss: 0.0511 - accuracy: 0.2758 - val_loss: 0.0521 - val_accuracy: 0.2726
Epoch 257/265
5/5 [==============================] - ETA: 0s - loss: 0.0508 - accuracy: 0.2767
 (9.820083418023108, 1e-05)-DP guarantees for epoch 257 

5/5 [==============================] - 2s 360ms/step - loss: 0.0508 - accuracy: 0.2767 - val_loss: 0.0520 - val_accuracy: 0.2722
Epoch 258/265
5/5 [==============================] - ETA: 0s - loss: 0.0511 - accuracy: 0.2740
 (9.839610235157256, 1e-05)-DP guarantees for epoch 258 

5/5 [==============================] - 3s 348ms/step - loss: 0.0511 - accuracy: 0.2740 - val_loss: 0.0520 - val_accuracy: 0.2707
Epoch 259/265
5/5 [==============================] - ETA: 0s - loss: 0.0507 - accuracy: 0.2782
 (9.859137052291402, 1e-05)-DP guarantees for epoch 259 

5/5 [==============================] - 3s 367ms/step - loss: 0.0507 - accuracy: 0.2782 - val_loss: 0.0520 - val_accuracy: 0.2731
Epoch 260/265
5/5 [==============================] - ETA: 0s - loss: 0.0510 - accuracy: 0.2761
 (9.87866386942555, 1e-05)-DP guarantees for epoch 260 

5/5 [==============================] - 3s 353ms/step - loss: 0.0510 - accuracy: 0.2761 - val_loss: 0.0519 - val_accuracy: 0.2707
Epoch 261/265
5/5 [==============================] - ETA: 0s - loss: 0.0509 - accuracy: 0.2751
 (9.898190686559698, 1e-05)-DP guarantees for epoch 261 

5/5 [==============================] - 3s 379ms/step - loss: 0.0509 - accuracy: 0.2751 - val_loss: 0.0519 - val_accuracy: 0.2724
Epoch 262/265
5/5 [==============================] - ETA: 0s - loss: 0.0511 - accuracy: 0.2766
 (9.917717503693844, 1e-05)-DP guarantees for epoch 262 

5/5 [==============================] - 2s 352ms/step - loss: 0.0511 - accuracy: 0.2766 - val_loss: 0.0520 - val_accuracy: 0.2729
Epoch 263/265
5/5 [==============================] - ETA: 0s - loss: 0.0508 - accuracy: 0.2773
 (9.937244320827991, 1e-05)-DP guarantees for epoch 263 

5/5 [==============================] - 2s 342ms/step - loss: 0.0508 - accuracy: 0.2773 - val_loss: 0.0520 - val_accuracy: 0.2708
Epoch 264/265
5/5 [==============================] - ETA: 0s - loss: 0.0507 - accuracy: 0.2777
 (9.95677113796214, 1e-05)-DP guarantees for epoch 264 

5/5 [==============================] - 3s 366ms/step - loss: 0.0507 - accuracy: 0.2777 - val_loss: 0.0519 - val_accuracy: 0.2733
Epoch 265/265
5/5 [==============================] - ETA: 0s - loss: 0.0505 - accuracy: 0.2784
 (9.976297955096285, 1e-05)-DP guarantees for epoch 265 

5/5 [==============================] - 3s 378ms/step - loss: 0.0505 - accuracy: 0.2784 - val_loss: 0.0519 - val_accuracy: 0.2738

This final val_accuracy is compliant with results reported in other framework. For comparison, in Opacus tutorials, the Resnet 18 reaches 60% val_accuracy at \(\epsilon=47\), but 15% at \(\epsilon=13\).