deel.lipdp.model module
DPParameters
dataclass
¶
Parameters used to set the dp training.
Attributes:
Name | Type | Description |
---|---|---|
noisify_strategy |
str
|
either "per-layer" or "global". |
noise_multiplier |
float
|
noise multiplier. |
delta |
float
|
delta parameter for DP. |
Source code in deel/lipdp/model.py
35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
DP_Accountant
¶
Bases: Callback
Callback to compute the DP guarantees at the end of each epoch.
Note: wandb is not a strict requirement for this callback to work, logging is also supported.
Attributes:
Name | Type | Description |
---|---|---|
log_fn |
log function to use. Takes a dictionary of (key, value) pairs as input. if 'wandb', use wandb.log. if 'logging', use logging.info. if 'all', use both wandb.log and logging.info. |
Source code in deel/lipdp/model.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
DP_Model
¶
Bases: Model
Source code in deel/lipdp/model.py
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
|
__init__(dp_layers, *args, dp_parameters, dataset_metadata, debug=False, **kwargs)
¶
Model Class based on the DEEL Sequential model. Only layer from the lipdp.layers module are allowed since the framework assume 1 lipschitz layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dp_layers |
the list of layers to use ( as done in sequential ) but here we can leverage the fact that layers may have multiple inputs/outputs. |
required | |
dp_parameters |
DPParameters
|
parameters used to set the dp procedure. |
required |
dataset_metadata |
DatasetMetadata
|
information about the dataset. Must contain: the input shape, number of training samples, the input bound, number of batches in the dataset and the batch size. |
required |
debug |
bool
|
when true print additionnal debug informations (must be in eager mode). Defaults to False. |
False
|
Note
The model is then calibrated to verify (epsilon,delta)-DP guarantees by noisying the values of the gradients during the training step. DP accounting is done with the associated Callback.
Raises:
Type | Description |
---|---|
TypeError
|
when the dp_parameters.noisify_strategy is not one of "per-layer" or "global" |
Source code in deel/lipdp/model.py
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
signal_to_noise_average(data)
¶
Compute the signal to noise ratio of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
a tuple (x,y) of a batch of data. The batch size must be equal to the one of the dataset. |
required |
Returns:
Name | Type | Description |
---|---|---|
ratios |
dictionary of signal to noise ratios. Keys are trainable variables names. |
|
norms |
dictionary of gradient norms. Keys are trainable variables names. |
|
bounds |
dictionary of gradient norm bounds. Keys are trainable variables names. |
Source code in deel/lipdp/model.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
|
signal_to_noise_elementwise(data)
¶
Compute the signal to noise ratio of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
a tuple (x,y) of a batch of data. |
required |
Returns:
Name | Type | Description |
---|---|---|
ratios |
dictionary of signal to noise ratios. Keys are trainable variables names. |
|
norms |
dictionary of gradient norms. Keys are trainable variables names. |
|
bounds |
dictionary of gradient norm bounds. Keys are trainable variables names. |
Source code in deel/lipdp/model.py
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
|
train_step(data)
¶
Train step of the model with DP guarantees.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
a tuple (x,y) of a batch of data. |
required |
Returns:
Name | Type | Description |
---|---|---|
metrics |
dictionary of metrics. |
Source code in deel/lipdp/model.py
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
|
DP_Sequential
¶
Bases: Sequential
Source code in deel/lipdp/model.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
|
__init__(*args, dp_parameters, dataset_metadata, debug=False, **kwargs)
¶
Model Class based on the DEEL Sequential model. Only layer from the lipdp.layers module are allowed since the framework assume 1 lipschitz layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dp_parameters |
DPParameters
|
parameters used to set the dp procedure. |
required |
dataset_metadata |
DatasetMetadata
|
information about the dataset. Must contain: the input shape, number of training samples, the input bound, number of batches in the dataset and the batch size. |
required |
debug |
bool
|
when true print additionnal debug informations (must be in eager mode). Defaults to False. |
False
|
Note
The model is then calibrated to verify (epsilon,delta)-DP guarantees by noisying the values of the gradients during the training step. DP accounting is done with the associated Callback.
Raises:
Type | Description |
---|---|
TypeError
|
when the dp_parameters.noisify_strategy is not one of "per-layer" or "global" |
Source code in deel/lipdp/model.py
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
compute_gradient_bounds(model)
¶
Compute the gradient norm bounds of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
model to train. |
required |
Returns:
Name | Type | Description |
---|---|---|
gradient_bounds |
dictionary of gradient norm bounds with (key, value) pairs (layer_name, gradient_bound). The order of the bounds is the same as the order of the layers returned by model.layers_backward_order(). |
Source code in deel/lipdp/model.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
get_eps_delta(model, epochs)
¶
Compute the (epsilon, delta)-DP guarantees of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
model to train. |
required | |
epochs |
number of epochs elapsed. |
required |
Returns:
Name | Type | Description |
---|---|---|
epsilon |
epsilon parameter of the (epsilon, delta)-DP guarantee. |
|
delta |
delta parameter of the (epsilon, delta)-DP guarantee. |
Source code in deel/lipdp/model.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
get_noise_multiplier_coefs(model)
¶
Get the noise multiplier coefficients of the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
model to train. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict_coefs |
dictionary of noise multiplier coefficients. The order of the coefficients is the same as the order of the layers returned by model.layers_forward_order(). |
Source code in deel/lipdp/model.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
global_noisify(model, gradient_bounds, trainable_vars, gradients)
¶
Add noise to gradients.
a single global noise is added to all gradients, based on the global sensitivity.
This is the default behaviour of the original DPGD algorithm. This may yield looser privacy bounds than local noisify.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
model to train. |
required | |
gradient_bounds |
dictionary of gradient norm upper bounds. The keys are the names of the trainable variables. |
required | |
trainable_vars |
list of trainable variables. The list is in the same order as gradients. |
required | |
gradients |
list of gradients to add noise to. The list is in the same order as trainable_vars. |
required |
Returns:
Name | Type | Description |
---|---|---|
noisy_grads |
list of noisy gradients. The list is in the same order as trainable_vars. |
Source code in deel/lipdp/model.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
|
local_noisify(model, gradient_bounds, trainable_vars, gradients)
¶
Add noise to gradients of trainable variables.
Remark: this yields tighter bounds than global_noisify.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
model to train. |
required | |
gradient_bounds |
dictionary of gradient norm upper bounds. Keys are trainable variables names. |
required | |
trainable_vars |
list of trainable variables. Same order as gradients. |
required | |
gradients |
list of gradients. Same order as trainable_vars. |
required |
Returns:
Type | Description |
---|---|
list of noisy gradients. Same order as trainable_vars. |
Source code in deel/lipdp/model.py
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|