Skip to content

deel.lipdp.model module

DPParameters dataclass

Parameters used to set the dp training.

Attributes:

Name Type Description
noisify_strategy str

either "per-layer" or "global".

noise_multiplier float

noise multiplier.

delta float

delta parameter for DP.

Source code in deel/lipdp/model.py
35
36
37
38
39
40
41
42
43
44
45
46
47
@dataclass
class DPParameters:
    """Parameters used to set the dp training.

    Attributes:
        noisify_strategy (str): either "per-layer" or "global".
        noise_multiplier (float): noise multiplier.
        delta (float): delta parameter for DP.
    """

    noisify_strategy: str
    noise_multiplier: float
    delta: float

DP_Accountant

Bases: Callback

Callback to compute the DP guarantees at the end of each epoch.

Note: wandb is not a strict requirement for this callback to work, logging is also supported.

Attributes:

Name Type Description
log_fn

log function to use. Takes a dictionary of (key, value) pairs as input. if 'wandb', use wandb.log. if 'logging', use logging.info. if 'all', use both wandb.log and logging.info.

Source code in deel/lipdp/model.py
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
class DP_Accountant(keras.callbacks.Callback):
    """Callback to compute the DP guarantees at the end of each epoch.

    Note: wandb is not a strict requirement for this callback to work, logging is also supported.

    Attributes:
        log_fn: log function to use. Takes a dictionary of (key, value) pairs as input.
                if 'wandb', use wandb.log.
                if 'logging', use logging.info.
                if 'all', use both wandb.log and logging.info.
    """

    def __init__(self, log_fn="all"):
        super().__init__()
        if log_fn == "wandb":
            import wandb

            log_fn = wandb.log
        elif log_fn == "logging":
            import logging

            log_fn = logging.info
        elif log_fn == "all":
            import wandb
            import logging

            log_fn = lambda x: [wandb.log(x), logging.info(x)]
        self.log_fn = log_fn

    def on_epoch_end(self, epoch, logs=None):
        epsilon, delta = get_eps_delta(model=self.model, epochs=epoch + 1)
        print(f"\n {(epsilon,delta)}-DP guarantees for epoch {epoch+1} \n")

        # plot epoch at the same time as epsilon and delta to ease comparison of plots in wandb API.
        to_log = {
            "epsilon": epsilon,
            "delta": delta,
            "epoch": epoch + 1,
        }

        last_layer = self.model.layers_backward_order()[0]
        if isinstance(last_layer, deel.lipdp.layers.DP_ClipGradient):
            clipping_value = float(last_layer.clip_value.numpy())
            to_log["clipping_value"] = clipping_value

        self.log_fn(to_log)

DP_Model

Bases: Model

Source code in deel/lipdp/model.py
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
class DP_Model(deel.lip.model.Model):
    def __init__(
        self,
        dp_layers,
        *args,
        dp_parameters: DPParameters,
        dataset_metadata: DatasetMetadata,
        debug: bool = False,
        **kwargs,
    ):
        """Model Class based on the DEEL Sequential model. Only layer from the lipdp.layers module are allowed since
        the framework assume 1 lipschitz layers.

        Args:
            dp_layers: the list of layers to use ( as done in sequential ) but here we can leverage
                the fact that layers may have multiple inputs/outputs.
            dp_parameters (DPParameters): parameters used to set the dp procedure.
            dataset_metadata (DatasetMetadata): information about the dataset. Must contain: the input shape, number
                of training samples, the input bound, number of batches in the dataset and the batch size.
            debug (bool, optional): when true print additionnal debug informations (must be in eager mode). Defaults to False.

        Note:
            The model is then calibrated to verify (epsilon,delta)-DP guarantees by noisying the values of the gradients during the training step.
            DP accounting is done with the associated Callback.

        Raises:
            TypeError: when the dp_parameters.noisify_strategy is not one of "per-layer" or "global"
        """
        super().__init__(*args, **kwargs)
        self.dp_layers = dp_layers
        self.dp_parameters = dp_parameters
        self.dataset_metadata = dataset_metadata
        self.debug = debug
        if self.dp_parameters.noisify_strategy == "global":
            self.noisify_fun = global_noisify
        elif self.dp_parameters.noisify_strategy == "per-layer":
            self.noisify_fun = local_noisify
        else:
            raise TypeError(
                "Incorrect noisify_strategy argument during model initialisation."
            )

    def layers_forward_order(self):
        return self.dp_layers

    def layers_backward_order(self):
        return self.dp_layers[::-1]

    def call(self, inputs, *args, **kwargs):
        x = inputs
        for layer in self.layers_forward_order():
            x = layer(x, *args, **kwargs)
        return x

    def signal_to_noise_elementwise(self, data):
        """Compute the signal to noise ratio of the model.

        Args:
            data: a tuple (x,y) of a batch of data.

        Returns:
            ratios: dictionary of signal to noise ratios. Keys are trainable variables names.
            norms: dictionary of gradient norms. Keys are trainable variables names.
            bounds: dictionary of gradient norm bounds. Keys are trainable variables names.
        """
        import tqdm

        examples, labels = data

        trainable_vars = self.trainable_variables
        names = [v.name for v in trainable_vars]

        bounds = compute_gradient_bounds(model=self)
        batch_size = self.dataset_metadata.batch_size
        bounds = {name: bound * batch_size for name, bound in bounds.items()}

        norms = {name: [] for name in names}
        ratios = {name: [] for name in names}
        total = len(examples)
        for x, y in tqdm.tqdm(zip(examples, labels), total=total):
            with tf.GradientTape() as tape:
                x = tf.expand_dims(x, axis=0)
                y = tf.expand_dims(y, axis=0)
                y_pred = self(x, training=True)
                loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

            gradient_element = tape.gradient(loss, self.trainable_variables)
            norms_element = [tf.linalg.norm(g, axis=None) for g in gradient_element]
            norms_element = {name: norm for name, norm in zip(names, norms_element)}
            for name in names:
                norms[name].append(norms_element[name].numpy())

            ratios_element = {}
            for name in names:
                ratios_element[name] = norms_element[name] / bounds[name]
            for name in names:
                ratios[name].append(ratios_element[name])

        ratios = {name: np.stack(ratios[name]) for name in names}
        norms = {name: np.stack(norms[name]) for name in names}

        return ratios, norms, bounds

    def signal_to_noise_average(self, data):
        """Compute the signal to noise ratio of the model.

        Args:
            data: a tuple (x,y) of a batch of data. The batch size must be equal to the one of the dataset.

        Returns:
            ratios: dictionary of signal to noise ratios. Keys are trainable variables names.
            norms: dictionary of gradient norms. Keys are trainable variables names.
            bounds: dictionary of gradient norm bounds. Keys are trainable variables names.
        """
        x, y = data

        assert (
            x.shape[0] == self.dataset_metadata.batch_size
        ), "Batch size must be equal to the one of the dataset"

        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)  # Forward pass
            # tf.cast(y_pred,dtype=y.dtype)
            # Compute the loss value
            # (the loss function is configured in `compile()`)
            loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)

        # gradient norms
        norms = [tf.linalg.norm(g, axis=None) for g in gradients]
        names = [v.name for v in trainable_vars]
        norms = {name: norm for name, norm in zip(names, norms)}

        # Get gradient bounds
        bounds = compute_gradient_bounds(model=self)
        batch_size = self.dataset_metadata.batch_size
        bounds = {name: (bound * batch_size) for name, bound in bounds.items()}

        ratios = {}
        for name in names:
            ratios[name] = norms[name] / bounds[name]
        return ratios, norms, bounds

    # Define the differentially private training step
    def train_step(self, data):
        """Train step of the model with DP guarantees.

        Args:
            data: a tuple (x,y) of a batch of data.

        Returns:
            metrics: dictionary of metrics.
        """
        # Unpack data
        x, y = data

        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)  # Forward pass
            # tf.cast(y_pred,dtype=y.dtype)
            # Compute the loss value
            # (the loss function is configured in `compile()`)
            loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)
        # Get gradient bounds
        gradient_bounds = compute_gradient_bounds(model=self)
        noisy_gradients = self.noisify_fun(
            self, gradient_bounds, trainable_vars, gradients
        )
        # Each optimizer is a postprocessing of private gradients
        self.optimizer.apply_gradients(zip(noisy_gradients, trainable_vars))

        # Update Metrics
        self.compiled_metrics.update_state(y, y_pred)

        # Condense to ensure Lipschitz constraints |W|_2 = 1
        self.condense()
        return {m.name: m.result() for m in self.metrics}

__init__(dp_layers, *args, dp_parameters, dataset_metadata, debug=False, **kwargs)

Model Class based on the DEEL Sequential model. Only layer from the lipdp.layers module are allowed since the framework assume 1 lipschitz layers.

Parameters:

Name Type Description Default
dp_layers

the list of layers to use ( as done in sequential ) but here we can leverage the fact that layers may have multiple inputs/outputs.

required
dp_parameters DPParameters

parameters used to set the dp procedure.

required
dataset_metadata DatasetMetadata

information about the dataset. Must contain: the input shape, number of training samples, the input bound, number of batches in the dataset and the batch size.

required
debug bool

when true print additionnal debug informations (must be in eager mode). Defaults to False.

False
Note

The model is then calibrated to verify (epsilon,delta)-DP guarantees by noisying the values of the gradients during the training step. DP accounting is done with the associated Callback.

Raises:

Type Description
TypeError

when the dp_parameters.noisify_strategy is not one of "per-layer" or "global"

Source code in deel/lipdp/model.py
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
def __init__(
    self,
    dp_layers,
    *args,
    dp_parameters: DPParameters,
    dataset_metadata: DatasetMetadata,
    debug: bool = False,
    **kwargs,
):
    """Model Class based on the DEEL Sequential model. Only layer from the lipdp.layers module are allowed since
    the framework assume 1 lipschitz layers.

    Args:
        dp_layers: the list of layers to use ( as done in sequential ) but here we can leverage
            the fact that layers may have multiple inputs/outputs.
        dp_parameters (DPParameters): parameters used to set the dp procedure.
        dataset_metadata (DatasetMetadata): information about the dataset. Must contain: the input shape, number
            of training samples, the input bound, number of batches in the dataset and the batch size.
        debug (bool, optional): when true print additionnal debug informations (must be in eager mode). Defaults to False.

    Note:
        The model is then calibrated to verify (epsilon,delta)-DP guarantees by noisying the values of the gradients during the training step.
        DP accounting is done with the associated Callback.

    Raises:
        TypeError: when the dp_parameters.noisify_strategy is not one of "per-layer" or "global"
    """
    super().__init__(*args, **kwargs)
    self.dp_layers = dp_layers
    self.dp_parameters = dp_parameters
    self.dataset_metadata = dataset_metadata
    self.debug = debug
    if self.dp_parameters.noisify_strategy == "global":
        self.noisify_fun = global_noisify
    elif self.dp_parameters.noisify_strategy == "per-layer":
        self.noisify_fun = local_noisify
    else:
        raise TypeError(
            "Incorrect noisify_strategy argument during model initialisation."
        )

signal_to_noise_average(data)

Compute the signal to noise ratio of the model.

Parameters:

Name Type Description Default
data

a tuple (x,y) of a batch of data. The batch size must be equal to the one of the dataset.

required

Returns:

Name Type Description
ratios

dictionary of signal to noise ratios. Keys are trainable variables names.

norms

dictionary of gradient norms. Keys are trainable variables names.

bounds

dictionary of gradient norm bounds. Keys are trainable variables names.

Source code in deel/lipdp/model.py
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
def signal_to_noise_average(self, data):
    """Compute the signal to noise ratio of the model.

    Args:
        data: a tuple (x,y) of a batch of data. The batch size must be equal to the one of the dataset.

    Returns:
        ratios: dictionary of signal to noise ratios. Keys are trainable variables names.
        norms: dictionary of gradient norms. Keys are trainable variables names.
        bounds: dictionary of gradient norm bounds. Keys are trainable variables names.
    """
    x, y = data

    assert (
        x.shape[0] == self.dataset_metadata.batch_size
    ), "Batch size must be equal to the one of the dataset"

    with tf.GradientTape() as tape:
        y_pred = self(x, training=True)  # Forward pass
        # tf.cast(y_pred,dtype=y.dtype)
        # Compute the loss value
        # (the loss function is configured in `compile()`)
        loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

    # Compute gradients
    trainable_vars = self.trainable_variables
    gradients = tape.gradient(loss, trainable_vars)

    # gradient norms
    norms = [tf.linalg.norm(g, axis=None) for g in gradients]
    names = [v.name for v in trainable_vars]
    norms = {name: norm for name, norm in zip(names, norms)}

    # Get gradient bounds
    bounds = compute_gradient_bounds(model=self)
    batch_size = self.dataset_metadata.batch_size
    bounds = {name: (bound * batch_size) for name, bound in bounds.items()}

    ratios = {}
    for name in names:
        ratios[name] = norms[name] / bounds[name]
    return ratios, norms, bounds

signal_to_noise_elementwise(data)

Compute the signal to noise ratio of the model.

Parameters:

Name Type Description Default
data

a tuple (x,y) of a batch of data.

required

Returns:

Name Type Description
ratios

dictionary of signal to noise ratios. Keys are trainable variables names.

norms

dictionary of gradient norms. Keys are trainable variables names.

bounds

dictionary of gradient norm bounds. Keys are trainable variables names.

Source code in deel/lipdp/model.py
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
def signal_to_noise_elementwise(self, data):
    """Compute the signal to noise ratio of the model.

    Args:
        data: a tuple (x,y) of a batch of data.

    Returns:
        ratios: dictionary of signal to noise ratios. Keys are trainable variables names.
        norms: dictionary of gradient norms. Keys are trainable variables names.
        bounds: dictionary of gradient norm bounds. Keys are trainable variables names.
    """
    import tqdm

    examples, labels = data

    trainable_vars = self.trainable_variables
    names = [v.name for v in trainable_vars]

    bounds = compute_gradient_bounds(model=self)
    batch_size = self.dataset_metadata.batch_size
    bounds = {name: bound * batch_size for name, bound in bounds.items()}

    norms = {name: [] for name in names}
    ratios = {name: [] for name in names}
    total = len(examples)
    for x, y in tqdm.tqdm(zip(examples, labels), total=total):
        with tf.GradientTape() as tape:
            x = tf.expand_dims(x, axis=0)
            y = tf.expand_dims(y, axis=0)
            y_pred = self(x, training=True)
            loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

        gradient_element = tape.gradient(loss, self.trainable_variables)
        norms_element = [tf.linalg.norm(g, axis=None) for g in gradient_element]
        norms_element = {name: norm for name, norm in zip(names, norms_element)}
        for name in names:
            norms[name].append(norms_element[name].numpy())

        ratios_element = {}
        for name in names:
            ratios_element[name] = norms_element[name] / bounds[name]
        for name in names:
            ratios[name].append(ratios_element[name])

    ratios = {name: np.stack(ratios[name]) for name in names}
    norms = {name: np.stack(norms[name]) for name in names}

    return ratios, norms, bounds

train_step(data)

Train step of the model with DP guarantees.

Parameters:

Name Type Description Default
data

a tuple (x,y) of a batch of data.

required

Returns:

Name Type Description
metrics

dictionary of metrics.

Source code in deel/lipdp/model.py
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
def train_step(self, data):
    """Train step of the model with DP guarantees.

    Args:
        data: a tuple (x,y) of a batch of data.

    Returns:
        metrics: dictionary of metrics.
    """
    # Unpack data
    x, y = data

    with tf.GradientTape() as tape:
        y_pred = self(x, training=True)  # Forward pass
        # tf.cast(y_pred,dtype=y.dtype)
        # Compute the loss value
        # (the loss function is configured in `compile()`)
        loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

    # Compute gradients
    trainable_vars = self.trainable_variables
    gradients = tape.gradient(loss, trainable_vars)
    # Get gradient bounds
    gradient_bounds = compute_gradient_bounds(model=self)
    noisy_gradients = self.noisify_fun(
        self, gradient_bounds, trainable_vars, gradients
    )
    # Each optimizer is a postprocessing of private gradients
    self.optimizer.apply_gradients(zip(noisy_gradients, trainable_vars))

    # Update Metrics
    self.compiled_metrics.update_state(y, y_pred)

    # Condense to ensure Lipschitz constraints |W|_2 = 1
    self.condense()
    return {m.name: m.result() for m in self.metrics}

DP_Sequential

Bases: Sequential

Source code in deel/lipdp/model.py
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
class DP_Sequential(deel.lip.model.Sequential):
    def __init__(
        self,
        *args,
        dp_parameters: DPParameters,
        dataset_metadata: DatasetMetadata,
        debug: bool = False,
        **kwargs,
    ):
        """Model Class based on the DEEL Sequential model. Only layer from the lipdp.layers module are allowed since
        the framework assume 1 lipschitz layers.

        Args:
            dp_parameters (DPParameters): parameters used to set the dp procedure.
            dataset_metadata (DatasetMetadata): information about the dataset. Must contain: the input shape, number
                of training samples, the input bound, number of batches in the dataset and the batch size.
            debug (bool, optional): when true print additionnal debug informations (must be in eager mode). Defaults to False.

        Note:
            The model is then calibrated to verify (epsilon,delta)-DP guarantees by noisying the values of the gradients during the training step.
            DP accounting is done with the associated Callback.

        Raises:
            TypeError: when the dp_parameters.noisify_strategy is not one of "per-layer" or "global"
        """
        super().__init__(*args, **kwargs)
        self.dp_parameters = dp_parameters
        self.dataset_metadata = dataset_metadata
        self.debug = debug
        if self.dp_parameters.noisify_strategy == "global":
            self.noisify_fun = global_noisify
        elif self.dp_parameters.noisify_strategy == "per-layer":
            self.noisify_fun = local_noisify
        else:
            raise TypeError(
                "Incorrect noisify_strategy argument during model initialisation."
            )

    def layers_forward_order(self):
        return self.layers

    def layers_backward_order(self):
        return self.layers[::-1]

    # Define the differentially private training step
    def train_step(self, data):
        # Unpack data
        x, y = data

        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)  # Forward pass
            # tf.cast(y_pred,dtype=y.dtype)
            # Compute the loss value
            # (the loss function is configured in `compile()`)
            loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)
        # Get gradient bounds
        gradient_bounds = compute_gradient_bounds(model=self)
        noisy_gradients = self.noisify_fun(
            self, gradient_bounds, trainable_vars, gradients
        )
        # Each optimizer is a postprocessing of the already (epsilon,delta)-DP gradients
        self.optimizer.apply_gradients(zip(noisy_gradients, trainable_vars))
        # self.optimizer.apply_gradients(zip(gradients, trainable_vars))
        # Update Metrics
        self.compiled_metrics.update_state(y, y_pred)
        # Condense to verify |W|_2 = 1
        self.condense()
        return {m.name: m.result() for m in self.metrics}

__init__(*args, dp_parameters, dataset_metadata, debug=False, **kwargs)

Model Class based on the DEEL Sequential model. Only layer from the lipdp.layers module are allowed since the framework assume 1 lipschitz layers.

Parameters:

Name Type Description Default
dp_parameters DPParameters

parameters used to set the dp procedure.

required
dataset_metadata DatasetMetadata

information about the dataset. Must contain: the input shape, number of training samples, the input bound, number of batches in the dataset and the batch size.

required
debug bool

when true print additionnal debug informations (must be in eager mode). Defaults to False.

False
Note

The model is then calibrated to verify (epsilon,delta)-DP guarantees by noisying the values of the gradients during the training step. DP accounting is done with the associated Callback.

Raises:

Type Description
TypeError

when the dp_parameters.noisify_strategy is not one of "per-layer" or "global"

Source code in deel/lipdp/model.py
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
def __init__(
    self,
    *args,
    dp_parameters: DPParameters,
    dataset_metadata: DatasetMetadata,
    debug: bool = False,
    **kwargs,
):
    """Model Class based on the DEEL Sequential model. Only layer from the lipdp.layers module are allowed since
    the framework assume 1 lipschitz layers.

    Args:
        dp_parameters (DPParameters): parameters used to set the dp procedure.
        dataset_metadata (DatasetMetadata): information about the dataset. Must contain: the input shape, number
            of training samples, the input bound, number of batches in the dataset and the batch size.
        debug (bool, optional): when true print additionnal debug informations (must be in eager mode). Defaults to False.

    Note:
        The model is then calibrated to verify (epsilon,delta)-DP guarantees by noisying the values of the gradients during the training step.
        DP accounting is done with the associated Callback.

    Raises:
        TypeError: when the dp_parameters.noisify_strategy is not one of "per-layer" or "global"
    """
    super().__init__(*args, **kwargs)
    self.dp_parameters = dp_parameters
    self.dataset_metadata = dataset_metadata
    self.debug = debug
    if self.dp_parameters.noisify_strategy == "global":
        self.noisify_fun = global_noisify
    elif self.dp_parameters.noisify_strategy == "per-layer":
        self.noisify_fun = local_noisify
    else:
        raise TypeError(
            "Incorrect noisify_strategy argument during model initialisation."
        )

compute_gradient_bounds(model)

Compute the gradient norm bounds of the model.

Parameters:

Name Type Description Default
model

model to train.

required

Returns:

Name Type Description
gradient_bounds

dictionary of gradient norm bounds with (key, value) pairs (layer_name, gradient_bound). The order of the bounds is the same as the order of the layers returned by model.layers_backward_order().

Source code in deel/lipdp/model.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def compute_gradient_bounds(model):
    """Compute the gradient norm bounds of the model.

    Args:
        model: model to train.

    Returns:
        gradient_bounds: dictionary of gradient norm bounds with (key, value) pairs (layer_name, gradient_bound).
                         The order of the bounds is the same as
                         the order of the layers returned by model.layers_backward_order().
    """
    # Initialisation, get lipschitz constant of loss
    input_bounds = {}
    gradient_bounds = {}
    input_bound = None  # Unknown at the start.

    # Forward pass to assess maximum activation norms
    for layer in model.layers_forward_order():
        assert isinstance(layer, DPLayer)
        if model.debug:
            print(f"Layer {layer.name} input bound: {input_bound}")
        input_bounds[layer.name] = input_bound
        input_bound = layer.propagate_inputs(input_bound)

    if model.debug:
        print(f"Layer {layer.name} input bound: {input_bound}")

    # since we aggregate using SUM_OVER_BATCH
    gradient_bound = tf.convert_to_tensor(model.loss.get_L()) / tf.convert_to_tensor(
        model.dataset_metadata.batch_size, dtype=tf.float32
    )

    # Backward pass to compute gradient norm bounds and accumulate Lip constant
    for layer in model.layers_backward_order():
        assert isinstance(layer, DPLayer)
        layer_input_bound = input_bounds[layer.name]
        if layer.has_parameters():
            assert len(layer.trainable_variables) == 1
            var_name = layer.trainable_variables[0].name
            gradient_bounds[var_name] = layer.backpropagate_params(
                layer_input_bound, gradient_bound
            )
        gradient_bound = layer.backpropagate_inputs(layer_input_bound, gradient_bound)

    # Return gradient bounds
    return gradient_bounds

get_eps_delta(model, epochs)

Compute the (epsilon, delta)-DP guarantees of the model.

Parameters:

Name Type Description Default
model

model to train.

required
epochs

number of epochs elapsed.

required

Returns:

Name Type Description
epsilon

epsilon parameter of the (epsilon, delta)-DP guarantee.

delta

delta parameter of the (epsilon, delta)-DP guarantee.

Source code in deel/lipdp/model.py
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def get_eps_delta(model, epochs):
    """Compute the (epsilon, delta)-DP guarantees of the model.

    Args:
        model: model to train.
        epochs: number of epochs elapsed.

    Returns:
        epsilon: epsilon parameter of the (epsilon, delta)-DP guarantee.
        delta: delta parameter of the (epsilon, delta)-DP guarantee.
    """
    num_grad_steps = epochs * model.dataset_metadata.nb_steps_per_epochs

    prob = model.dataset_metadata.batch_size / model.dataset_metadata.nb_samples_train

    # Dynamic clipping might be used.
    last_layer = model.layers_backward_order()[0]
    dynamic_clipping = {"mode": "fixed"}
    if isinstance(last_layer, deel.lipdp.layers.DP_ClipGradient):
        dynamic_clipping.update(last_layer._dynamic_dp_dict)  # copy dict
        if "patience" in dynamic_clipping:
            dynamic_clipping["num_updates"] = epochs // dynamic_clipping["patience"]

    if model.dp_parameters.noisify_strategy == "per-layer":
        nm_coefs = get_noise_multiplier_coefs(model)
        noise_multipliers = [
            model.dp_parameters.noise_multiplier * coef for coef in nm_coefs.values()
        ]
        mode = "per-layer"
    elif model.dp_parameters.noisify_strategy == "global":
        noise_multipliers = model.dp_parameters.noise_multiplier
        mode = "global"

    mech = DPGD_Mechanism(
        mode=mode,
        prob=prob,
        noise_multipliers=noise_multipliers,
        num_grad_steps=num_grad_steps,
        delta=model.dp_parameters.delta,
        dynamic_clipping=dynamic_clipping,
    )

    return mech.epsilon, mech.delta

get_noise_multiplier_coefs(model)

Get the noise multiplier coefficients of the model.

Parameters:

Name Type Description Default
model

model to train.

required

Returns:

Name Type Description
dict_coefs

dictionary of noise multiplier coefficients. The order of the coefficients is the same as the order of the layers returned by model.layers_forward_order().

Source code in deel/lipdp/model.py
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def get_noise_multiplier_coefs(model):
    """Get the noise multiplier coefficients of the model.

    Args:
        model: model to train.

    Returns:
        dict_coefs: dictionary of noise multiplier coefficients.
                    The order of the coefficients is the same as
                    the order of the layers returned by model.layers_forward_order().
    """
    dict_coefs = {}
    for (
        layer
    ) in (
        model.layers_forward_order()
    ):  # remark: insertion order is preserved in Python 3.7+
        assert isinstance(layer, DPLayer)
        if layer.has_parameters():
            assert len(layer.trainable_variables) == 1
            dict_coefs[layer.trainable_variables[0].name] = layer.nm_coef
    return dict_coefs

global_noisify(model, gradient_bounds, trainable_vars, gradients)

Add noise to gradients.

a single global noise is added to all gradients, based on the global sensitivity.

This is the default behaviour of the original DPGD algorithm. This may yield looser privacy bounds than local noisify.

Parameters:

Name Type Description Default
model

model to train.

required
gradient_bounds

dictionary of gradient norm upper bounds. The keys are the names of the trainable variables.

required
trainable_vars

list of trainable variables. The list is in the same order as gradients.

required
gradients

list of gradients to add noise to. The list is in the same order as trainable_vars.

required

Returns:

Name Type Description
noisy_grads

list of noisy gradients. The list is in the same order as trainable_vars.

Source code in deel/lipdp/model.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def global_noisify(model, gradient_bounds, trainable_vars, gradients):
    """Add noise to gradients.

    Remark: a single global noise is added to all gradients, based on the global sensitivity.
            This is the default behaviour of the original DPGD algorithm.
            This may yield looser privacy bounds than local noisify.

    Args:
        model: model to train.
        gradient_bounds: dictionary of gradient norm upper bounds. The keys are the names of the trainable variables.
        trainable_vars: list of trainable variables. The list is in the same order as gradients.
        gradients: list of gradients to add noise to. The list is in the same order as trainable_vars.

    Returns:
        noisy_grads: list of noisy gradients. The list is in the same order as trainable_vars.
    """
    global_sensitivity = tf.math.sqrt(
        tf.math.reduce_sum([bound**2 for bound in gradient_bounds.values()])
    )
    # no factor-2 : use add_remove definition of DP.
    stddev = model.dp_parameters.noise_multiplier * global_sensitivity
    noises = [tf.random.normal(shape=tf.shape(g), stddev=stddev) for g in gradients]
    if model.debug:
        for grad, var in zip(gradients, trainable_vars):
            upperboundgrad = (
                gradient_bounds[var.name] * model.dataset_metadata.batch_size
            )
            noise_msg = (
                f"Adding noise of stddev : {stddev}"
                f" to variable {var.name}"
                f" of gradient norm upper bound {upperboundgrad}"
                f" and effective norm {tf.norm(grad)}"
            )
            print(noise_msg)
    noisy_grads = [g + n for g, n in zip(gradients, noises)]
    return noisy_grads

local_noisify(model, gradient_bounds, trainable_vars, gradients)

Add noise to gradients of trainable variables.

Remark: this yields tighter bounds than global_noisify.

Parameters:

Name Type Description Default
model

model to train.

required
gradient_bounds

dictionary of gradient norm upper bounds. Keys are trainable variables names.

required
trainable_vars

list of trainable variables. Same order as gradients.

required
gradients

list of gradients. Same order as trainable_vars.

required

Returns:

Type Description

list of noisy gradients. Same order as trainable_vars.

Source code in deel/lipdp/model.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def local_noisify(model, gradient_bounds, trainable_vars, gradients):
    """Add noise to gradients of trainable variables.

    Remark: this yields tighter bounds than global_noisify.

    Args:
        model: model to train.
        gradient_bounds: dictionary of gradient norm upper bounds. Keys are trainable variables names.
        trainable_vars: list of trainable variables. Same order as gradients.
        gradients: list of gradients. Same order as trainable_vars.

    Returns:
        list of noisy gradients. Same order as trainable_vars.
    """
    nm_coefs = get_noise_multiplier_coefs(model)
    noises = []
    for grad, var in zip(gradients, trainable_vars):
        if var.name in gradient_bounds.keys():
            # no factor-2 : use add_remove definition of DP
            stddev = (
                model.dp_parameters.noise_multiplier
                * gradient_bounds[var.name]
                * nm_coefs[var.name]
            )
            noises.append(tf.random.normal(shape=tf.shape(grad), stddev=stddev))
            if model.debug:
                upperboundgrad = (
                    gradient_bounds[var.name] * model.dataset_metadata.batch_size
                )
                noise_msg = (
                    f"Adding noise of stddev : {stddev}"
                    f" to variable {var.name}"
                    f" of gradient norm upper bound {upperboundgrad}"
                    f" and effective norm {tf.norm(grad)}"
                )
                print(noise_msg)
        else:
            raise ValueError(f"Variable {var.name} not in gradient bounds.")

    noisy_grads = [g + n for g, n in zip(gradients, noises)]
    return noisy_grads